Document Type : Research Paper I Open Access I Released under (CC BY-NC) license
Authors
1 Ph.D Student in Exercise Physiology
2 Professor, University of Guilan
Abstract
Aim: The purpose of this study was to investigate the relationship between NT-proBNP, galactin-3 and aldosterone variables in endurance skiers after endurance skiing in height.
Method: Twenty four elite endurance skiers (age: 25 years; body fat: 14%) were divided into two groups (Experimental, Control). The skiing program included a skiing route of 8.5 km, a mean time of 65 minutes, and an average intensity of 70-90% of the maximum oxygen consumption. The NT-proBNP values were evaluated by ELISA. A week after skiing, a ride on a treadmill was done with a slope and distance and a similar time with the ski resort. To examine the relationship between the variables studied, Pearson correlation coefficient was used at a significant level of 5% using SPSS version 22 software.
Results: : The results showed that only galatin-3 with NT-ProBNP and NT-ProBNP with aldosterone showed significant correlation in height (P<0.05).
Conclusion: Increasing physiological pressure on the heart caused by exposure to hypoxia and dehydration may lead to changes in the aldosterone and galactin-3 hormone as a fibrotic cell marker.
Keywords
- Berent R, von Duvillard SP, Crouse SF, Auer J, Green JS, Sinzinger H and Schmid P. (2009). Short-term residential cardiac rehabilitation reduces B-type natriuretic peptide. Europ J Cardiovascular Preven Rehab, 16: 603-608.
- Carranza-García LE, George K, Serrano-Ostáriz E, Casado-Arroyo R, Caballero-Navarro AL and Legaz-Arrese A. (2011). Cardiac biomarker response to intermittent exercise bouts. Int J Sport Med,32: 327-331.
- Classens P, Claessens C and Claessens M. (2002). Physiological or pseudo physiological. ECG changes in endurance-trained athletes. Heart Vessels, 15: 181-90.
- Conraads VM, Beckers P, Vaes J, Martin M, Van Hoof V, De Maeyer C, et al. (2004). Combined endurance/resistance training reduces NT-proBNP levels in patients with chronic heart failure. Europ Heart J, 25: 1797-805.
- Detaint D, Messika-Zeitoun D, Chen HH, Rossi A, Avierinos JF, Scott C, et al. (2006). Association of B-type natriuretic peptide activation to left ventricular end-systolic remodeling in organic and functional mitral regurgitation. Am J Cardiol, 97: 1029-34.
- Dumic J, Dabelic S and Flögel M. (2006). Galectin-3: an open-ended story. Biochim BiophysicaActa (BBA)-Gen Sub, 1760: 616-635.
- Felker GM, Whellan D, Kraus WE, Clare R, Zannad F, Donahue M, et al. (2009). N-terminal pro-brain natriuretic peptide and exercise capacity in chronic heart failure: data from the Heart Failure and a Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION) study. Am Heart J, 158: 37-44.
- Foote RS, Pearlman JD, Siegel AH and Yeo KT. (2004). Detection of exercise-induced ischemia by changes in B-typenatriuretic peptides. J Am Coll Cardiol, 44:1980-87.
- Freund BJ, Wade C and Claybaugh J. (1988). Effects of exercise on atrial natriuretic factor, Release mechanisms and implications for fluid homeostasis. Sport Med, 6: 364-377.
- Geny B, Saini J, Mettauer B, Lampert E, Piquard F, Follenius M, et al. (1996). Effect of short-term endurance training on exercise capacity, haemodynamics and atrial natriuretic peptide secretion in heart transplant recipients. Europ J Appl Physiol Occupphysiol,73:259-266.
- Hager A, Christov F and Hess J. (2012). Increase in N-terminus-pro-B-type natriuretic peptide during exercise of patients with univentricular heart after a total cavopulmonary connection. Pediatric Cardiol, 33: 764-69.
- Hättasch R, Spethmann S, de Boer RA, Ruifrok WP, Schattke S, Wagner M, et al. (2013). Galectin-3 increase in endurance athletes. Europ J prevent cardiol, 21: 1192-1199.
- Hofstetter L, Scherrer U, Rimoldi SF. (2017). Going to high altitude with heart disease. Cardiovascular Medicine, 20(04):87-95.
- Hughes RC. (1999). Secretion of the galectin family of mammalian carbohydrate-binding family proteins. Biochem Biophysica Acta, 1473:172-185.
- Kim H, Lee J, Hyun JW, Park JW, Joo HG and Shin T. (2007). Expression and immunohistochemical localization of galectin-3 in various mouse tissues. Cell Biol Int,31:655-662.
- Levery AS, et al. (2006). Using standardized serum Creatinin values in the modification of diet in renal disease study equation for estimating glomenular filtration rate. Ann intern Med, 145:247-254.
- Lok DJA, Van Der Meer P, De la Porte P, Lipsic E, Van Wijngaarden J, et al. (2010). Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol, 99: 323–8.
- Middleton N, Shave R, George K, Whyte G, Forster J, Oxborough D, Gaze D and Collinson P. (2006). Novel application of flow propagtionvelocity and ischemia-modified albumin in analysis of postexercise cardiac function in men. Expert Physic,91:511-519.
- Miller TD, Rogers PJ, Bauer BA, Burnett JC, Bailey KA and Bove AA. (1990). What stimulates atrial natriuretic factor release during exercise? J Lab Clin Med, 116: 487-491.
- Pruszczyk P, Kostrubiec M, Bochowicz A, Styczyński G, Szulc M, Kurzyna M, et al. (2003). N-terminal pro-brain natriuretic peptide in patients with acute pulmonary embolism. Europ Respirate J, 22: 649-53.
- Raizada A, Bhandari S, Ahmed Khan M, Singh HV, Thomas S, Sarabhai V, et al. (2007). Brain type natriuretic peptide (BNP) -a marker of new millennium in diagnosis of congestive heart failure. Indian J Clin Biochem, 22: 4-9.
- Salvagno GL, Schena F, Gelati M, Danese E, Cervellin G, Guidi GC, et al. (2014). The concentration of high-sensitivity troponin I, galectin-3 and NT-proBNP substantially increase after a 60-km ultramarathon. Clin Chem Lab Med, 52: 267-272.
- Sharma UC, Pokharel S, Van Brakel TJ, Van Berlo JH, Cleutjens JP, Schroen B, et al. (2004). Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation, 110: 3121-3128.
- Staempfli R, Schmid JP, Schenker S, Eser P, Trachsel LD, Deluigi C, et al. (2016). Cardiopulmonary adaptation to short-term high altitude exposure in adult Fontan patients. Heart, 102(16):1296–301.