Document Type : Research Paper I Open Access I Released under (CC BY-NC) license

Authors

1 Department of Physical Education, Amin Police University, Tehran, Iran

2 Assistant Professor of Exercise Physiology, Department of Sport Sciences, Faculty of Social Sciences, Imam Khomeini International University, Qazvin, Iran

3 Msc of Exercise Physiology, Tabriz, Iran

Abstract

Aim: The aim of this study was to determine the effect of 12-week high-intensity interval training on heart mass and expression of beta-catenin and glycogen synthase kinase-3-beta genes in myocardial tissue of male rats.Method: Thirty male Wistar rats were randomized into three groups, including sham (n = 10), control (n = 10), and HIIT (n = 10). The experimental group underwent HIIT consisting of 2 - 8 repetitions of 4-min high-intensity intervals (85% - 90% peak speed) interspersed with low-intensity intervals (45% - 50% peak speed), performed five times/week over 12 weeks. Forty-eight hours after the last training session, animals’ hearts were removed. The gene expressions of beta-catenin and glycogen synthase kinase-3-beta were analyzed by the RT-PCR method. The independent t-test was used for statistical analysis (P < 0.05).Results: The results showed that the body weight was significantly lower in HIIT group (P = 0.029) and heart/body weight ratio were significantly higher in the intervention group than in the control group (P = 0.001). Also, beta-catenin gene expression were significantly higher in trained rats than the control group (P = 0.002). Regarding GSK3-β genes expression, although mean levels were lower in the trained group than the control, the differences were statistically insignificant (P = 0.71).Conclusions: HIIT training, along with considerable reduction of body weight, increase the ratio of heart to body weight and cardiac hypertrophy. Also, these exercise training trigger cardiac hypertrophic signals by stimulating the Wnt signaling pathway and significantly increasing beta-catenin gene expression.

Keywords

Main Subjects

  1. Weeks KL, Bernardo BC, Ooi JY, Patterson NL, McMullen JR. The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Adv Exp Med Biol. 2017; 1000:187-210. doi: 10.1007/978-981-10-4304-8_12. [PMID: 29098623].
  2. Cunningham KS, Spears DA, Care M. Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic Sci Res. 2019;4(3):223-40. doi: 10.1080/20961790.2019.1633761. [PMID: 31489388]. [PMCID: PMC6713129].
  3. Millar LM, Fanton Z, Finocchiaro G, Sanchez-Fernandez G, Dhutia H, Malhotra A, et al. Differentiation between athlete’s heart and dilated cardiomyopathy in athletic individuals. Heart. 2020;106(14):1059-65. doi: 10.1136/heartjnl-2019-316147. [PMID: 32341137].
  4. Bass-Stringer S, Tai CM, McMullen JR. IGF1–PI3K-induced physiological cardiac hypertrophy: Implications for new heart failure therapies, biomarkers, and predicting cardiotoxicity. J Sport Health Sci. 2021;10(6):637-47. doi: 10.1016/j.jshs.2020.11.009. [PMID: 33246162]. [PMCID: PMC8724616].
  5. Bullard T, Ji M, An R, Trinh L, Mackenzie M, Mullen SP. A systematic review and meta-analysis of adherence to physical activity interventions among three chronic conditions: cancer, cardiovascular disease, and diabetes. BMC public health. 2019;19(1):1-11. doi: 10.1186/s12889-019-6877-z. [PMID: 31126260]. [PMCID: PMC6534868].
  6. Astani K, Bashiri J, Pourrazi H, Nourazar MA. Effect of high-intensity interval training and coenzyme Q10 supplementation on cardiac apoptosis in obese male rats. ARYA Atherosclerosis J. 2022;18:1-9. doi: 10.22122/ARYA.V18I0.2459.
  7. Ghardashi-Afousi A, Davoodi M, Keshtkar-Hesamabadi B, Asvadi-Fard M, Bigi MAB, Izadi MR, et al. Improved carotid intima-media thickness-induced high-intensity interval training associated with decreased serum levels of Dkk-1 and sclerostin in type 2 diabetes. J Diabetes Complications. 2020;34(1):107469. doi: 10.1016/j.jdiacomp.2019.107469. [PMID: 31706805].
  8. Gillen JB, Gibala MJ. Interval training: a time-efficient exercise strategy to improve cardiometabolic health. Appl Physiol Nutr Metab. 2018;43(10):iii-iv. doi: 10.1139/apnm-2018-0453. [PMID: 30255712].
  9. Xiao Z, Kong B, Yang H, Dai C, Fang J, Qin T, et al. Key player in cardiac hypertrophy, emphasizing the role of toll-like receptor 4. Front Cardiovasc Med. 2020;7:579036. doi: 10.3389/fcvm.2020.579036. [PMID: 33324685]. [PMCID: PMC7725871].
  10. Bernardo BC, Ooi JY, Weeks KL, Patterson NL, McMullen JR. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol Rev. 2018;98(1):419-75. doi: 10.1152/physrev.00043.2016. [PMID: 29351515].
  11. de Jaime-Soguero A, Abreu de Oliveira WA, Lluis F. The pleiotropic effects of the canonical Wnt pathway in early development and pluripotency. Genes. 2018;9(2):93. doi: 10.3390/genes9020093. [PMID: 29443926]. [PMCID: PMC5852589].
  12. Sidrat T, Rehman Z-U, Joo M-D, Lee K-L, Kong I-K. Wnt/β-catenin Pathway-Mediated PPARδ Expression during Embryonic Development Differentiation and Disease. Int J Mol Sci. 2021;22(4):1854. doi: 10.3390/ijms22041854. [PMID: 33673357]. [PMCID: PMC7918746].
  13. Schaefer KN, Peifer M. Wnt/Beta-catenin signaling regulation and a role for biomolecular condensates. Dev Cell. 2019;48(4):429-44. doi: 10.1016/j.devcel.2019.01.025. [PMID: 30782412]. [PMCID: PMC6386181].
  14. Haybar H, Khodadi E, Shahrabi S. Wnt/β-catenin in ischemic myocardium: interactions and signaling pathways as a therapeutic target. Heart Fail Rev. 2019;24(3):411-9. doi: 10.1007/s10741-018-9759-z. [PMID: 30539334].
  15. Wang J, Gong M, Zuo S, Xu J, Paul C, Li H, et al. WNT11-conditioned medium promotes angiogenesis through the activation of non-canonical WNT-PKC-JNK signaling pathway. Genes. 2020;11(11):1277. doi: 10.3390/genes11111277. [PMID: 33137935]. [PMCID: PMC7694138].
  16. Pagnotti GM, Styner M, Uzer G, Patel VS, Wright LE, Ness KK, et al. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol. 2019;15(6):339-55. doi: 10.1038/s41574-019-0170-1. [PMID: 30814687]. [PMCID: PMC6520125].
  17. Amin H, Vachris J, Hamilton A, Steuerwald N, Howden R, Arthur ST. GSK3β inhibition and LEF1 upregulation in skeletal muscle following a bout of downhill running. J Physiol Sci. 2014;64(1):1-11. doi: 10.1007/s12576-013-0284-5. [PMID: 23963660].
  18. Pourrazi H, Asgharpour-Arshad M, Gholami F, Abbasi S. Effect of high-intensity interval training on apoptotic gene expression in rat myocardial tissue. Gene, Cell and Tissue. 2020;7(2). doi: 10.5812/gct.101963.
  19. Astorino TA, Schubert MM. Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). Eur J Appl Physiol. 2018;118(1):51-63. doi: 10.1007/s00421-017-3756-0. [PMID: 29124325].
  20. Dorling J, Broom DR, Burns SF, Clayton DJ, Deighton K, James LJ, et al. Acute and chronic effects of exercise on appetite, energy intake, and appetite-related hormones: the modulating effect of adiposity, sex, and habitual physical activity. Nutrients. 2018;10(9):1140. doi: 10.3390/nu10091140. [PMID: 30131457]. [PMCID: PMC6164815].
  21. Verboven M, Cuypers A, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, et al. High intensity training improves cardiac function in healthy rats. Sci Rep. 2019;9(1):1-8. doi: 10.1038/s41598-019-42023-1. [PMID: 30948751]. [PMCID: PMC6449502].
  22. Aschenbach WG, Ho RC, Sakamoto K, Fujii N, Li Y, Kim Y-B, et al. Regulation of Dishevelled and β-catenin in rat skeletal muscle: an alternative exercise-induced GSK-3β signaling pathway. Am J Physiol Endocrinol Metab. 2006;291(1):E152-E8. doi: 10.1152/ajpendo.00180.2005. [PMID: 16478782].
  23. Petropoulos H, Skerjanc IS. β-Catenin is essential and sufficient for skeletal myogenesis in P19 cells. J Biol Chem. 2002;277(18):15393-9. doi: 10.1074/jbc.M112141200. [PMID: 11856745].
  24. Fujimaki S, Hidaka R, Asashima M, Takemasa T, Kuwabara T. Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running. J Biol Chem. 2014;289(11):7399-412. doi: 10.1074/jbc.M113.539247. [PMID: 24482229]. [PMCID: PMC3953255].
  25. Vissing K, McGee S, Farup J, Kjølhede T, Vendelbo M, Jessen N. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training‐accustomed individuals. Scand J Med Sci Sports. 2013;23(3):355-66. doi: 10.1111/j.1600-0838.2011.01395.x. [PMID: 23802289].
  26. Sharma M, Chuang WW, Sun Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation. J Biolo Chem. 2002;277(34):30935-41. doi: 10.1074/jbc.M201919200. [PMID: 12063252].
  27. Zhou Q, Deng J, Yao J, Song J, Meng D, Zhu Y, et al. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine. 2021;74:103713. doi: 10.1016/j.ebiom.2021.103713. [PMID: 34837851]. [PMCID: PMC8626841].
  28. Haque ZK, Wang D-Z. How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci. 2017;74(6):983-1000. doi: 10.1007/s00018-016-2373-0. [PMID: 27714411]. [PMCID: PMC6990138].
  29.