نوع مقاله : مقاله پژوهشی Released under (CC BY-NC) license I Open Access I

نویسندگان

1 دانشیار گروه فیزیولوژ ی ورزشی، دانشکده علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 استادیار گروه فیزیولوژ ی ورزشی، دانشکده علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

مقدمه: هدف ‌از پژوهش حاضر بررسی تأثیر هشت هفته تمرین‌ تناوبی با شدت بالا (HIIT) بر سطوح پروتئین‌هایSERCA2a   و Akt بافت قلب موش‌های صحرایی مبتلا به دیابت نوع دو بود. روش شناسی: در مطالعه حاضر 40 سر موش صحرایی نر با سن 8 هفته و میانگین وزن 220-200گرم، به چهار گروه 1-کنترل سالم؛ 2-کنترل دیابت؛ 3-گروه سالم تمرین و 4-گروه تمرین دیابت تقسیم شدند. پس از هشت هفته رژیم غذایی پر چرب و سپس القاء دیابت با STZ (یک دوزmg/kg ۳۵)، برنامه تمرین را به مدت ۸هفته و 5جلسه در هفته انجام دادند. 48ساعت بعد از آخرین جلسه تمرین، بافت قلب استخراج و بررسی سطوح پروتئین‌ها با استفاده از روش وسترن‌بلات انجام گرفت. برای تحلیل داده­ها پس از انجام آزمون آنوای دو‌راهه برای بررسی اثر تعاملی دیابت و تمرین، از آزمون آنوای یک‌طرفه و همچنین آزمون تعقیبی توکی برای بررسی تغییرات بین گروه‌ها استفاده شد. سطح معناداری 05/0>P در نظر گرفته شد. از نرم افزار SPSS نسخه 25 برای تجزیه و تحلیل داده­ها استفاده شد. یافته­ها: بیان پروتئین SERCA2a و Akt به طور معناداری در بافت قلب موش‌های دیابتی در مقایسه با موش­های سالم کمتر شد(P<0.0001). هشت هفته تمرین بیان پروتئین SERCA2a و Akt را در گروه‌های دیابتی و سالم به طور معناداری نسبت به گروه‌های کنترل بیشتر کرد. نتیجه‌گیری: نتایج این پژوهش به طور کلی نشان داد که تمرینات HIIT احتمالاً می­تواند تغییرات نامطلوب ناشی از دیابت را در بیان این پروتئین‌ها تعدیل کند و به عنوان یک راهبرد غیردارویی امیدوارکننده باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of eight weeks of high-intensity intermittent aerobic training on the levels of SERCA2 and Akt proteins Cardiomyocytes of rats with type 2 diabetes

نویسندگان [English]

  • Ali Shabani Fard 1
  • Mohsen Ghanbarzadeh 1
  • Aliakbar Alizadeh 2
  • Rouhollah Ranjbar 1

1 Department of Sports Physiology, Faculty of Sports Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Assistant Professor, Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده [English]

Introduction: The purpose of this study was to investigate the effect of eight weeks of high intensity interval training (HIIT) on the levels of SERCA2a and Akt proteins in the heart tissue of rats with type 2 diabetes. Methodology: In the present study, 40 male rats with an age of 8 weeks and an average weight of 200-220 grams were divided into four groups: 1- healthy control (saline); 2- diabetes control; 3- Healthy exercise group and 4- Diabetic exercise group. After eight weeks of high-fat diet and then induction of diabetes with STZ (one dose of 35 mg/kg), they did the exercise program for 8 weeks and 5 sessions per week. 48 hours after the last training session, heart tissue was extracted and protein levels were checked using western blot method. To analyze the data, after performing the two-way ANOVA test to investigate the interactive effect of diabetes and exercise, one-way ANOVA test was used to investigate the changes between groups. A significance level of P<0.05 was considered. SPSS version 25 software was used for data analysis. Results: The protein expression of SERCA2a and Akt decreased significantly in the heart tissue of diabetic rats compared to healthy rats (P<0.0001). Eight weeks of training significantly increased SERCA2a and Akt protein expression in diabetic and healthy groups compared to control groups. Conclusion: The results showed that HIIT exercises can possibly moderate the adverse changes caused by diabetes in the expression of these proteins and is promising as a non-pharmacological strategy.

کلیدواژه‌ها [English]

  • Type2 Diabetes
  • Heart
  • SERCA2
  • Akt
  1. Lohrasebi M, Edalat Manesh MA, Hosseini SA, Farkhaie F, Salehi OR, Khazemi N. Lipid lowering effects of coriandrum sativum extract and endurance training in streptozotocin induced diabetic rats. Report of Health Care. 2016;2(2):25-34.
  2. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? The Journal of Clinical Endocrinology & Metabolism. 2011;96(6):1654-63.
  3. Lewandowski KC, Banach E, Bieńkiewicz M, Lewiński A. Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: effects of short-term and chronic hyperglycaemia. Archives of medical science: AMS. 2011;7(2):294.
  4. Aronson D, Edelman ER. Coronary artery disease and diabetes mellitus. Cardiology clinics. 2014;32(3):439-55.
  5. Preis SR, Hwang S-J, Coady S, Pencina MJ, D'Agostino Sr RB, Savage PJ, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009;119(13):1728-35.
  6. Sanches IC, Buzin M, Conti FF, Dias DdS, Santos CPd, Sirvente R, et al. Combined aerobic and resistance exercise training attenuates cardiac dysfunctions in a model of diabetes and menopause. PLoS One. 2018;13(9):e0202731.
  7. Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovascular diabetology. 2017;16:1-20.
  8. Khakdan S, Delfan M, Heydarpour Meymeh M, Kazerouni F, Ghaedi H, Shanaki M, et al. High-intensity interval training (HIIT) effectively enhances heart function via miR-195 dependent cardiomyopathy reduction in high-fat high-fructose diet-induced diabetic rats. Archives of physiology and biochemistry. 2020;126(3):250-7.
  9. Ghafouri-Fard S, Khanbabapour Sasi A, Hussen BM, Shoorei H, Siddiq A, Taheri M, et al. Interplay between PI3K/AKT pathway and heart disorders. Molecular biology reports. 2022;49(10):9767-81.
  10. Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the role of the PI3K/Akt pathway in ischemic injury and post-infarct left ventricular remodeling in normal and diabetic heart. Cells. 2022;11(9):1553.
  11. DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, et al. Akt1 is required for physiological cardiac growth. Circulation. 2006;113(17):2097-104.
  12. Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart failure reviews. 2010;15:125-32.
  13. Walsh K. Akt signaling and growth of the heart. Am Heart Assoc; 2006. p. 2032-4.
  14. Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286(5445):1741-4.
  15. Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, et al. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science. 1999;286(5445):1738-41.
  16. Chemaly ER, Troncone L, Lebeche D. SERCA control of cell death and survival. Cell calcium. 2018;69:46-61.
  17. Fearnley CJ, Roderick HL, Bootman MD. Calcium signaling in cardiac myocytes. Cold Spring Harbor perspectives in biology. 2011;3(11):a004242.
  18. Kralik PM, Ye G, Metreveli NS, Shen X, Epstein PN. Cardiomyocyte dysfunction in models of type 1 and type 2 diabetes. Cardiovascular toxicology. 2005;5(3):285-92.
  19. Mareedu S, Million ED, Duan D, Babu GJ. Abnormal calcium handling in Duchenne muscular dystrophy: mechanisms and potential therapies. Frontiers in physiology. 2021;12:647010.
  20. Marcadet L, Juracic ES, Khan N, Bouredji Z, Yagita H, Ward LM, et al. RANKL inhibition reduces cardiac hypertrophy in mdx mice and possibly in children with duchenne muscular dystrophy. Cells. 2023;12(11):1538.
  21. Zanuso S, Jimenez A, Pugliese G, Corigliano G, Balducci S. Exercise for the management of type 2 diabetes: a review of the evidence. Acta diabetologica. 2010;47:15-22.
  22. Lancaster GI, Febbraio MA. The immunomodulating role of exercise in metabolic disease. Trends in immunology. 2014;35(6):262-9.
  23. Castorena CM, Arias EB, Sharma N, Cartee GD. Postexercise improvement in insulin-stimulated glucose uptake occurs concomitant with greater AS160 phosphorylation in muscle from normal and insulin-resistant rats. Diabetes. 2014;63(7):2297-308.
  24. Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, et al. The regulation of sarco (endo) plasmic reticulum calcium-ATPases (SERCA). Canadian journal of physiology and pharmacology. 2015;93(10):843-54.
  25. Farrell PA, Joyner MJ, Caiozzo V. ACSM's advanced exercise physiology: Wolters Kluwer Health Adis (ESP); 2011.
  26. Sugimoto K, Rashid IB, Shoji M, Suda T, Yasujima M. Early changes in insulin receptor signaling and pain sensation in streptozotocin-induced diabetic neuropathy in rats. The Journal of pain. 2008;9(3):237-45.
  27. Mu J, Petrov A, Eiermann GJ, Woods J, Zhou Y-P, Li Z, et al. Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. European journal of pharmacology. 2009;623(1-3):148-54.
  28. Chen C, Zhang Y, Huang C. Berberine inhibits PTP1B activity and mimics insulin action. Biochemical and Biophysical Research Communications. 2010;397(3):543-7.
  29. Calegari L, Nunes RB, Mozzaquattro BB, Rossato DD, Dal Lago P. Exercise training improves the IL-10/TNF-α cytokine balance in the gastrocnemius of rats with heart failure. Brazilian journal of physical therapy. 2018;22(2):154-60.
  30. Ramezani N, Vanaky B, Shakeri N, Soltanian Z, Fakhari Rad F, Shams Z. Evaluation of Bcl-2 and Bax Expression in the Heart of Diabetic Rats after Four Weeks of High Intensity Interval Training. Medical Laboratory Journal. 2019;13(1):15-20.
  31. Kurd M, Valipour Dehnou V, Tavakoli SA, Gahreman DE. Effects of endurance training on hippocampus DJ‐1, cannabinoid receptor type2 and blood glucose concentration in diabetic rats. Journal of Diabetes Investigation. 2019;10(1):43-50.
  32. Wakatsuki T, Schlessinger J, Elson EL. The biochemical response of the heart to hypertension and exercise. Trends in biochemical sciences. 2004 Nov 1;29(11):609-17.
  33. Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, et al. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduction and Targeted Therapy. 2022;7(1):306.
  34. Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panáková D, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143(7):1072-83.
  35. Bezzerides VJ, Platt C, Lerchenmüller C, Paruchuri K, Oh NL, Xiao C, et al. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury. JCI insight. 2016;1(9).
  36. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes & development. 2006;20(24):3347-65.
  37. Mei Y, Thompson MD, Shiraishi Y, Cohen RA, Tong X. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase C674 promotes ischemia-and hypoxia-induced angiogenesis via coordinated endothelial cell and macrophage function. Journal of molecular and cellular cardiology. 2014;76:275-82.
  38. Hadri L, Lipskaia L, Kawase Y, Clement N, Plenge T, Lebeche D. Transcoronary gene transfer of SERCA2a increases coronary blood flow trought an increase of eNOS activity in endothelial cells. Circ Res. 2007;101:E65.
  39. Lipskaia L, Chemaly ER, Hadri L, Lompre A-M, Hajjar RJ. Sarcoplasmic reticulum Ca2+ ATPase as a therapeutic target for heart failure. Expert opinion on biological therapy. 2010;10(1):29-41.
  40. Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM. Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circulation research. 2003 May 2;92(8):904-11.
  41. Zhang M, Hagenmueller M, Riffel JH, Kreusser MM, Bernhold E, Fan J, et al. Calcium/calmodulin-dependent protein kinase II couples Wnt signaling with histone deacetylase 4 and mediates dishevelled-induced cardiomyopathy. Hypertension. 2015;65(2):335-44.
  42. Park J-H, Kho C. MicroRNAs and calcium signaling in heart disease. International Journal of Molecular Sciences. 2021;22(19):10582.
  43. Harvey PA, Leinwand LA. Cellular mechanisms of cardiomyopathy. Journal of Cell Biology. 2011;194(3):355-65.
  44. Qin F, Siwik DA, Lancel S, Zhang J, Kuster GM, Luptak I, et al. Hydrogen peroxide–mediated SERCA cysteine 674 oxidation contributes to impaired cardiac myocyte relaxation in senescent mouse heart. Journal of the American Heart Association. 2013;2(4):e000184.
  45. Kleindienst A, Battault S, Belaidi E, Tanguy S, Rosselin M, Boulghobra D, et al. Exercise does not activate the β 3 adrenergic receptor–eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic research in cardiology. 2016;111:1-12.
  46. Falcao-Pires I, Hamdani N, Borbély A, Gavina C, Schalkwijk CG, van der Velden J, et al. Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation. 2011;124(10):1151-9.
  47. Zhang R-H, Guo H, Kandadi MR, Wang X-M, Ren J. Ca+ 2/calmodulin-dependent protein kinase mediates glucose toxicity-induced cardiomyocyte contractile dysfunction. Journal of Diabetes Research. 2012;2012.
  48. Xu H, Van Remmen H. The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies. Skeletal Muscle. 2021;11(1):25.
  49. Motloch LJ, Cacheux M, Ishikawa K, Xie C, Hu J, Aguero J, et al. Primary effect of SERCA 2a gene transfer on conduction reserve in chronic myocardial infarction. Journal of the American Heart Association. 2018;7(18):e009598.
  50. Hosseinzadeh Barkoursaraei, Z., Akef, Atefeh, Arazi, H., Mehrabani, J., Rahmaninia, F. The Effect of Eight Weeks of Superand Compound Resistance Training on Salivary Cortisol and Testosterone Hormones, Muscle Function and Fat Percentage in Active Young Women. Journal Of Metabolism and Exercise, 2023; 13(2): 1-10. doi: 10.22124/JME.2023.25028.311. (in persian)