نوع مقاله : مقاله پژوهشی Released under (CC BY-NC) license I Open Access I

نویسندگان

گروه فیزیولوژی ورزشی دانشکده تربیت بدنی و علوم ورزشی دانشگاه گیلان، رشت، ایران

چکیده

مقدمه: مصرف رژیم غذایی پرچرب منجر به اختلال در بیوژنز میتوکندری کبد می­شود. تمرینات ورزشی و هایپوکسی که به­عنوان راهبردهای پیشگیری یا درمانی جدید برای بیماری کبد چرب غیر الکلی (NAFLD) ناشی از چاقی می­باشند، احتمالاً می­توانند عملکرد میتوکندری مختل شده را بهبود بخشند. هدف از پژوهش حاضر، تعیین اثر تغذیه، تمرین و هایپوکسی بر بیوژنز میتوکندری کبد در رت­های نر ویستار بود. روش پژوهش: 32 سر رت نر (سن: 6 هفته؛ میانگین وزن: 25/167 گرم) به­طور تصادفی به چهار گروه 8 تایی شامل گروه­های رژیم غذایی نرمال (ND)، رژیم غذایی پرچرب (HFD)، رژیم غذایی پرچرب و تمرین در شرایط نورموکسی (HFD-HIIT)، رژیم غذایی پرچرب و تمرین در شرایط هایپوکسی (HFD-HHIIT) تقسیم شدند. پس از تعیین حداکثر سرعت هوازی (MAV) در شرایط نورموکسی (ارتفاع حدود 50 متر) و هایپوکسی-هیپوباریک (ارتفاع حدود 3000 متر)، پروتکلHIIT به مدت 12 هفته و 3 جلسه در هفته اجرا شد که شامل اجرای 3 تا 8 مرحله فعالیت 4 دقیقه­ای با شدتی معادل 80 تا 93 درصد MAV و با دوره­های استراحت فعال 2 دقیقه­ای با شدت 50 درصد MAV بود. در پایان، سطوح ژن­های PGC-1α و Tfam  از طریق RT-PCR و محتوی چربی کبدی از طریق رنگ­آمیزی Oil Red در بافت کبد اندازه­گیری شد. یافته‌ها: دو گروه HFD-HIIT و HFD-HHIIT افزایش معنی­داری در بیان ژن­های PGC-1α و Tfam و کاهش معنی­داری در محتوای چربی کبدی نسبت به گروه  HFDنشان دادند (05/0p<). با این حال، گروه HFD+HHIIT افزایش معنی­داری در بیان ژن  Tfamو کاهش معنی­داری در محتوی چربی کبد نسبت به HFD+HIIT نشان داد (05/0p<). نتیجه‌گیری: : به­نظر می­رسد، تمرینHIIT مستقل از شرایط هایپوکسی توانسته است، PGC-1α را افزایش دهد. در حالی­که، هایپوکسی با افزایش معنی­دار بیان ژن Tfam که در بهبود ظرفیت عملکرد میتوکندری نقش دارد، منجر به کاهش بیشتر محتوی چربی کبدی نسبت به شرایط نورموکسی شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Twelve weeks high intensity interval training independently of hypoxia induced hepatic mitochondria biogenesis in male rats under high fat diet.

نویسندگان [English]

  • faeghe ghasemi
  • Hamid Mohebbi

Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran

چکیده [English]

Introduction: Consuming a high-fat diet leads to disruption of liver mitochondrial biogenesis. Training exercise and hypoxia, which are new preventive or therapeutic strategies for obesity-induced Non-alcoholic fatty liver disease (NAFLD), may improve the impaired mitochondrial function. The aim of this study was to determine the effect of nutrition, training and hypoxia on liver mitochondrial biogenesis in male Wistar rats. Methods: Thirty-two male rats (age: 6 weeks old; average weight: 167.25 grams (were randomly divided into four groups of eight including normal diet (ND), high-fat diet (HFD), high-fat diet and training in normoxia (HFD-HIIT) and high-fat diet and training in hypoxia (HFD-HHIIT). After determining the maximum aerobic velocity (MAV) in normoxia and hypoxia-hypobaric, the HIIT protocol was performed for 12 weeks and three sessions per week, which included 3 to 8 bouts 4-minute activity with an intensity of 80 to 93 percent of MAV and 2-minute active rest periods with an intensity of 50 percent of MAV. At the end, the levels of PGC-1α and Tfam genes were measured through RT-PCR and liver fat content was measured through Oil Red staining in liver tissue. Results: Both HFD-HIIT and HFD-HHIIT groups showed a significant increase in the expression of PGC-1α and Tfam genes and a significant decrease in liver fat content compared to the HFD group (p<0.05). However, the HFD+HHIIT group showed a significant increase in Tfam gene expression and a significant decrease in liver fat content compared to the HFD+HIIT group (p<0.05). Conclusions: It seems that HIIT training has been able to increase PGC-1α independent of hypoxia conditions. Whereas, hypoxia with a significant increase in the expression of the Tfam gene, which plays a role in improving the capacity of mitochondrial function, led to a greater decrease in liver fat content than in normoxia conditions.

کلیدواژه‌ها [English]

  • High intensity interval training
  • Hypoxia
  • Mitochondrial biogenesis
  • NAFLD
  • High Fat Diet
  1. Ahmadi A, Sheikholeslami-Vatani D, Ghaeeni S, Baazm M. (2021). The effects of different training modalities on monocarboxylate transporters mct1 and mct4, hypoxia inducible factor-1α (hif-1α), and pgc-1α gene expression in rat skeletal muscles. Mol Biol Rep.48(3):2153-61.
  2. Akimoto T, Sorg BS, Yan Z. (2004). Real-time imaging of peroxisome proliferator-activated receptor-γ coactivator-1α promoter activity in skeletal muscles of living mice. American Journal of Physiology-Cell Physiology.287(3):C790-C6.
  3. Aryapour E, Kietzmann T. (2022). Mitochondria, mitophagy, and the role of deubiquitinases as novel therapeutic targets in liver pathology. J Cell Biochem.123(10):1634-46.
  4. Ascensão A, Martins MJ, Santos-Alves E, Gonçalves IO, Portincasa P, Oliveira PJ, et al. (2013). Modulation of hepatic redox status and mitochondrial metabolism by exercise: Therapeutic strategy for liver diseases. Mitochondrion.13(6):862-70.
  5. Axen KV, Dikeakos A, Sclafani A. (2003). High dietary fat promotes syndrome x in nonobese rats. The Journal of nutrition.133(7):2244-9.
  6. Bishop DJ, Granata C, Eynon N. (2014). Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochimica et Biophysica Acta (BBA)-General Subjects.1840(4):1266-75.
  7. Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, et al. (2007). Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell metabolism.5(4):313-20.
  8. Carabelli J, Burgueño AL, Rosselli MS, Gianotti TF, Lago NR, Pirola CJ, et al. (2011). High fat diet‐induced liver steatosis promotes an increase in liver mitochondrial biogenesis in response to hypoxia. J Cell Mol Med.15(6):1329-38.
  9. Chen D, Li X, Zhang L, Zhu M, Gao L. (2018). A high‐fat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues. J Cell Biochem.119(11):9602-.
  10. Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, et al. (2016). Mitophagy receptor fundc1 regulates mitochondrial dynamics and mitophagy. Autophagy.12(4):689-702.
  11. Cohen JC, Horton JD, Hobbs HH. (2011). Human fatty liver disease: Old questions and new insights. Science.332(6037):1519-23.
  12. Çolak R, Ağaşcıoğlu E, Çakatay U. (2021). “Live high train low” hypoxic training enhances exercise performance with efficient redox homeostasis in rats' soleus muscle. High Alt Med Biol.22(1):77-86.
  13. Costa LE, Boveris A, Koch OR, Taquini AC. (1988). Liver and heart mitochondria in rats submitted to chronic hypobaric hypoxia. American Journal of Physiology-Cell Physiology.255(1):C123-C9.
  14. Fernandes MSdS, Silva LdLdSe, Kubrusly MS, Lima TRLdA, Muller CR, Américo ALV, et al. (2020). Aerobic exercise training exerts beneficial effects upon oxidative metabolism and non-enzymatic antioxidant defense in the liver of leptin deficiency mice. Front Endocrinol (Lausanne).11:588502.
  15. Flores K, Siques P, Brito J, Ordenes S, Arriaza K, Pena E, et al. (2020). Lower body weight in rats under hypobaric hypoxia exposure would lead to reduced right ventricular hypertrophy and increased ampk activation. Front Physiol.11:342.
  16. Gauthier M-S, Favier R, Lavoie J-M. (2006). Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr.95(2):273-81.
  17. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. (2012). Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. The Journal of physiology.590(5):1077-84.
  18. Granata C, Jamnick NA, Bishop DJ. (2018). Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Med.48(7):1541-59.
  19. Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. (2016). Mitochondrial adaptations to high‐volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. The FASEB journal.30(10):3413-23.
  20. Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. (2017). Sprint-interval but not continuous exercise increases pgc-1α protein content and p53 phosphorylation in nuclear fractions of human skeletal muscle. Sci Rep.7(1):44227.
  21. Holloszy JO. (1967). Biochemical adaptations in muscle: Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem.242(9):2278-82.
  22. Hosseini SM, Mohebbi H, Ghafoori H, Rezadoost MH. (2023). The effect of hypoxia and normoxia training on autophagy in male rats hepatocytes with a high-fat diet. Journal of Applied Health Studies in Sport Physiology. (Articles in Press).
  23. Ito M, Suzuki J, Tsujioka S, Sasaki M, Gomori A, Shirakura T, et al. (2007). Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high‐fat diet. Hepatology Research.37(1):50-7.
  24. Jendzjowsky NG, DeLorey DS. (2011). A prospective evaluation of non-interval-and interval-based exercise training progressions in rodents. Applied Physiology, Nutrition, and Metabolism.36(5):723-9.
  25. Jornayvaz FR, Shulman GI. (2010). Regulation of mitochondrial biogenesis. Essays Biochem.47:69-84.
  26. Kyriazis ID, Vassi E, Alvanou M, Angelakis C, Skaperda Z, Tekos F, et al. (2022). The impact of diet upon mitochondrial physiology. Int J Mol Med.50(5):1-26.
  27. Larson-Casey JL, He C, Carter AB. (2020). Mitochondrial quality control in pulmonary fibrosis. Redox biology.33:101426.
  28. Li R, Toan S, Zhou H. (2020). Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY).12(7):6467.
  29. Little JP, Safdar A, Benton CR, Wright DC. (2011). Skeletal muscle and beyond: The role of exercise as a mediator of systemic mitochondrial biogenesis. Applied physiology, nutrition, and metabolism.36(5):598-607.
  30. Luo Y, Lu G, Chen Y, Liu F, Xu G, Yin J, et al. (2013). Long-term cycles of hypoxia and normoxia increase the contents of liver mitochondrial DNA in rats. Eur J Appl Physiol.113:223-32.
  31. Luo Y, Lu G, Chen Y, Liu F, Xu G, Yin J, et al. (2013). Long-term cycles of hypoxia and normoxia increase the contents of liver mitochondrial DNA in rats. Eur J Appl Physiol.113(1):223-32.
  32. Maiti P, Muthuraju S, Ilavazhagan G, Singh SB. (2008). Hypobaric hypoxia induces dendritic plasticity in cortical and hippocampal pyramidal neurons in rat brain. Behav Brain Res.189(2):233-43.
  33. Marquis-Gravel G, Hayami D, Juneau M, Nigam A, Guilbeault V, Latour É, et al. (2015). Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients. Preventive medicine reports.2:314-8.
  34. Martin D, Windsor J. (2008). From mountain to bedside: Understanding the clinical relevance of human acclimatisation to high-altitude hypoxia. Postgrad Med J.84(998):622-7.
  35. Morris EM, Meers GM, Booth FW, Fritsche KL, Hardin CD, Thyfault JP, et al. (2012). Pgc-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. American Journal of Physiology-Gastrointestinal and Liver Physiology.303(8):G979-G92.
  36. Murray CJ, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF, et al. (2015). Global, regional, and national disability-adjusted life years (dalys) for 306 diseases and injuries and healthy life expectancy (hale) for 188 countries, 1990–2013: Quantifying the epidemiological transition. The Lancet.386(10009):2145-91.
  37. Muscella A, Stefàno E, Lunetti P, Capobianco L, Marsigliante S. (2020). The regulation of fat metabolism during aerobic exercise. Biomolecules.10(12):1699.
  38. Oh S, So R, Shida T, Matsuo T, Kim B, Akiyama K, et al. (2017). High-intensity aerobic exercise improves both hepatic fat content and stiffness in sedentary obese men with nonalcoholic fatty liver disease. Sci Rep.7(1):43029.
  39. Perumpail BJ, Khan MA, Yoo ER, Cholankeril G, Kim D, Ahmed A. (2017). Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J Gastroenterol.23(47):8263.
  40. Pino-de la Fuente F, Quezada L, Sepúlveda C, Monsalves-Alvarez M, Rodríguez JM, Sacristan C, et al. (2019). Exercise regulates lipid droplet dynamics in normal and fatty liver. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids.1864(12):158519.
  41. Pirola CJ, Gianotti TF, Burgueño AL, Rey-Funes M, Loidl CF, Mallardi P, et al. (2013). Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut.62(9):1356-63.
  42. Postic C, Girard J. (2008). Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: Lessons from genetically engineered mice. The Journal of clinical investigation.118(3):829-38.
  43. Rabøl R, Petersen KF, Dufour S, Flannery C, Shulman GI. (2011). Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proceedings of the National Academy of Sciences.108(33):13705-9.
  44. Ramanathan R, Ali AH, Ibdah JA. (2022). Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. International Journal of Molecular Sciences.23(13):7280.
  45. Rector RS, Thyfault JP, Uptergrove GM, Morris EM, Naples SP, Borengasser SJ, et al. (2010). Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol.52(5):727-36.
  46. Roberts FL, Markby GR. (2021). New insights into molecular mechanisms mediating adaptation to exercise; a review focusing on mitochondrial biogenesis, mitochondrial function, mitophagy and autophagy. Cells.10(10):2639.
  47. SaiRam M, Sharma S, Dipti P, Pauline T, Kain A, Mongia S, et al. (1998). Effect of hypobaric hypoxia on immune function in albino rats. Int J Biometeorol.42(1):55-9.
  48. Santos-Alves E, Marques-Aleixo I, Rizo-Roca D, Torrella J, Oliveira P, Magalhães J, et al. (2015). Exercise modulates liver cellular and mitochondrial proteins related to quality control signaling. Life Sci.135:124-30.
  49. Satia-Abouta J, Patterson RE, Schiller RN, Kristal AR. (2002). Energy from fat is associated with obesity in us men: Results from the prostate cancer prevention trial. Prev Med.34(5):493-501.
  50. Semenza GL. (1998). Hypoxia-inducible factor 1: Master regulator of o2 homeostasis. Curr Opin Genet Dev.8(5):588-94.
  51. Sini ZK, Afzalpour ME, Ahmadi MM, Sardar MA, Khaleghzadeh H, Gorgani-Firuzjaee S, et al. (2022). Comparison of the effects of high-intensity interval training and moderate-intensity continuous training on indices of liver and muscle tissue in high-fat diet-induced male rats with non-alcoholic fatty liver disease. Egyptian Liver Journal.12(1):63.
  52. Song K, Zhang Y, Ga Q, Bai Z, Ge R-L. (2020). High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and ampk signaling. Life Sci.252:117633.
  53. Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, et al. (2005). A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes.54(7):1926-33.
  54. Takahashi H, Kotani K, Tanaka K, Egucih Y, Anzai K. (2018). Therapeutic approaches to nonalcoholic fatty liver disease: Exercise intervention and related mechanisms. Front Endocrinol (Lausanne).588.
  55. Tiranti V, Rossi E, Ruiz-Carrillo A, Rossi G, Rocchi M, Didonato S, et al. (1995). Chromosomal localization of mitochondrial transcription factor a (tcf6), single-stranded DNA-binding protein (ssbp), and endonuclease g (endog), three human housekeeping genes involved in mitochondrial biogenesis. Genomics.25(2):559-64.
  56. Tsilingiris D, Tzeravini E, Koliaki C, Dalamaga M, Kokkinos A. (2021). The role of mitochondrial adaptation and metabolic flexibility in the pathophysiology of obesity and insulin resistance: An updated overview. Current Obesity Reports.1-23.
  57. Tsilingiris D, Tzeravini E, Koliaki C, Dalamaga M, Kokkinos A. (2021). The role of mitochondrial adaptation and metabolic flexibility in the pathophysiology of obesity and insulin resistance: An updated overview. Current Obesity Reports.1-23.
  58. Undamatla R, Fagunloye O, Chen J, Edmunds L, Murali A, Mills A, et al. (2023). Reduced mitophagy is an early feature of nafld and liver-specific parkin knockout hastens the onset of steatosis, inflammation and fibrosis. Sci Rep.13(1):7575.
  59. Virbasius JV, Scarpulla RC. (1994). Activation of the human mitochondrial transcription factor a gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proceedings of the National Academy of Sciences.91(4):1309-13.
  60. Wu F-F, Zhang K-L, Wang Z-M, Yang Y, Li S-H, Wang J-Q, et al. (2021). Benefit of a single simulated hypobaric hypoxia in healthy mice performance and analysis of mitochondria-related gene changes. Sci Rep.11(1):1-18.
  61. Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, et al. (2019). Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology.69(6):2672-82.
  62. Zeng C, Chen M. (2022). Progress in nonalcoholic fatty liver disease: Sirt family regulates mitochondrial biogenesis. Biomolecules.12(8):1079.
  63. Zhang W, Wang J, Wang L, Shi R, Chu C, Shi Z, et al. (2022). Alternate-day fasting prevents non-alcoholic fatty liver disease and working memory impairment in diet-induced obese mice. The Journal of Nutritional Biochemistry.110:109146.
  64. Zheng Y, Wang S, Wu J, Wang Y. (2023). Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: New insights from pathogenic mechanisms to clinically targeted therapy. J Transl Med.21(1):510.