نوع مقاله : مقاله پژوهشی Released under (CC BY-NC) license I Open Access I

نویسندگان

1 دانشجوی دکتری بیوشیمی و متابولیسم ورزشی

2 دانشیار دانشگاه مازندران

3 استادیار دانشگاه مازندران

چکیده

هدف: انرژی مازاد بدن به صورت تری­آسیل­گلیسرول (TAG) در بافت چربی اندام­های مختلف ذخیره می­شود. به منظور کاهش ذخایر چربی، باید استفاده از آن­ها برای تولید انرژی افزایش یابد. هدف پژوهش حاضر، بررسی تأثیر 8  هفته تمرین مقاومتی فزآینده و مصرف محلول ساکاروز بر بیان پروتئین­های موثر در لیپولیز بافت عضلۀ اسکلتی موش­های صحرایی بود.
روش‌شناسی: 32 سر موش صحرایی نر بالغ از نژاد ویستار (۶-۸ هفته­ای)، ابتدا به طور تصادفی به 2 گروه تغذیه شده با و بدون مصرف محلول ساکاروز 30 درصد تقسیم و پس از 4 هفته هر یک از گروه­ها به دو گروه تمرین و کنترل تقسیم شدند. گروه­های تمرینی به مدت 8 هفته تمرین مقاومتی به روش فزآینده (بالا رفتن از نردبان) را 3 روز در هفته انجام دادند. دو روز پس از آخرین جلسه تمرینی نمونه برداری انجام شد. مقدار پروتئین لیپاز حساس به هورمون (HSL)، گیرنده­ی کبدی ایکس- آلفا (LXRα) و پری­لیپین عضلۀ خم کننده بزرگ انگشتان (FHL) به روش وسترن بلات اندازه­گیری شد. جهت تعیین معنادار بودن تفاوت بین متغیرها و تعامل بین آنها از تحلیل واریانس دوطرفه در سطح معنی­داری 05/0 P<استفاده شد.
یافته‌ها: سطوح پروتئین HSL و پری­لیپین در آزمودنی­های گروه تمرین در مقایسه با کنترل افزایش (01/0P<)، اما سطح LXRα بدون تغییر بود. تأثیر مصرف محلول ساکاروز به تنهایی و همچنین تعامل بین مصرف محلول ساکاروز و تمرین مقاومتی فزآینده بر بیان پروتئین­های مذکور در بافت عضلۀ معنادار نبود.
نتیجه‌گیری: نتایج این پژوهش بیانگر آن است که اگرچه 8 هفته تمرین مقاومتی فزآینده موجب افزایش معنادار بیان برخی از پروتئین­های درگیر در لیپولیز شد، لیکن این تغییرات وابسته به مصرف محلول ساکاروز نمی­باشد.
 

کلیدواژه‌ها

عنوان مقاله [English]

The effect of 8 weeks progressive resistance training on the expression of proteins involved in skeletal muscle tissue lipolysis in rats feeding with sucrose solution

نویسندگان [English]

  • A Khodamoradi 1
  • E Talebi Garakani 2
  • F Mir Mohammad Rezaei 3
  • R Fathi 2

1 PhD student in Exercise Physiology

2 Associate Professor, Mazandaran University

3 Assistant Professor Professor, Mazandaran University

چکیده [English]

Aim: Excessed energy is stored as triacylglycerol (TAG) in adipose tissue within various organs. In order to reduce excessed fat storage, the utilization of fat storage must be increased to produce energy. The purpose of this study was to evaluate the effects of 8 weeks progressive resistance training on expression of proteins involved in skeletal muscle tissue lipolysis in rats feed with sucrose solution.
Method: 32 male Wistar rats (6-8 weeks) were randomly divided into two groups, the first group took sucrose solution 30%, the second group did not. After 4 weeks, each group divided into exercise and control groups. Exercise groups performed a progressive resistance training protocol 3 days per week for 8 weeks.  Tissue samples were taken 2 days after the last session. HSL, Perilipin and LXRα protein expression were determined by Western blot. To evaluate the difference between the variable and the interaction between them, two-way ANOVA at the significant level of P˂0.05 was used.
Results: Protein levels of HSL and Perilipin were increased in the exercise group compared to control (P˂0.001), but LXRα levels were unchanged. The effect of sucrose solution alone and the interaction between the consumption of sucrose and progressive resistance training on the expression of these proteins in muscle tissue were not significant.
Conclusion: The results show that although the 8 weeks of progressive resistance training significantly increased the expression of some proteins involved in lipolysis, but these changes are not related to the consumption of sucrose solution.
 

کلیدواژه‌ها [English]

  • Keywords: Progressive Resistance Training
  • Lipolysis
  • HSL
  • Perilipin
  • Liver X Receptor α
  1. Abid, A., Taha, O., Nseir, W., Farah, R., Grosovski, M., & Assy, N. (2009). Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. Journal of hepatology, 51(5), 918-924.
  2. Alsted, T. J., Nybo, L., Schweiger, M., Fledelius, C., Jacobsen, P., Zimmermann, R., Zechner, R., & Kiens, B. (2009). Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. American Journal of Physiology-Endocrinology And Metabolism, 296(3), E445-E453.
  3. Amer, P. (1988). Control of lipolysis and its relevance to development of obesity in man. Diabetes/metabolism reviews, 4(5), 507-515.
  4. Anthonsen, M. W., Rönnstrand, L., Wernstedt, C., Degerman, E., & Holm, C. (1998). Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. Journal of Biological Chemistry, 273(1), 215-221.
  5. Anthony, N. M., Gaidhu, M. P., & Ceddia, R. B. (2009). Regulation of Visceral and Subcutaneous Adipocyte Lipolysis by Acute AICAR‐induced AMPK Activation. Obesity, 17(7), 1312-1317.
  6. Bocarsly, M. E., Powell, E. S., Avena, N. M., & Hoebel, B. G. (2010). High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacology Biochemistry and Behavior, 97(1), 101-106.
  7. Brasaemle, D. L., Rubin, B., Harten, I. A., Gruia-Gray, J., Kimmel, A. R., & Londos, C. (2000). Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. Journal of Biological Chemistry, 275(49), 38486-38493.
  8. Butcher, L. R., Thomas, A., Backx, K., Roberts, A., Webb, R., & Morris, K. (2008). Low-intensity exercise exerts beneficial effects on plasma lipids via PPARγ. Medicine & Science in Sports & Exercise, 40(7), 1263-1270.
  9. Calle, M. C., & Fernandez, M. L. (2010). Effects of resistance training on the inflammatory response. Nutrition research and practice, 4(4), 259-269.

10. Caspersen, C. J., & Fulton, J. E. (2008). Epidemiology of walking and type 2 diabetes. Medicine and science in sports and exercise, 40(7 Suppl), S519-528.

11. Chen, G.-C., Huang, C.-Y., Chang, M.-Y., Chen, C.-H., Chen, S.-W., Huang, C.-j., & Chao, P.-M. (2011). Two unhealthy dietary habits featuring a high fat content and a sucrose-containing beverage intake, alone or in combination, on inducing metabolic syndrome in Wistar rats and C57BL/6J mice. Metabolism, 60(2), 155-164.

12. Corella, D., Qi, L., Tai, E. S., Deurenberg-Yap, M., Tan, C. E., Chew, S. K., & Ordovas, J. M. (2006). Perilipin Gene Variation Determines Higher Susceptibility to Insulin Resistance in Asian Women When Consuming a High–Saturated Fat, Low-Carbohydrate Diet. Diabetes care, 29(6), 1313-1319.

13. Côté, I., Sock, E. T. N., Lévy, É., & Lavoie, J.-M. (2013). An atherogenic diet decreases liver FXR gene expression and causes severe hepatic steatosis and hepatic cholesterol accumulation: effect of endurance training. European journal of nutrition, 52(5), 1523-1532.

14. Covington, J. D., Galgani, J. E., Moro, C., LaGrange, J. M., Zhang, Z., Rustan, A. C., Ravussin, E., & Bajpeyi, S. (2014). Skeletal muscle perilipin 3 and coatomer proteins are increased following exercise and are associated with fat oxidation. PloS one, 9(3), e91675.

15. Ducharme, N. A., & Bickel, P. E. (2008). Minireview: lipid droplets in lipogenesis and lipolysis. Endocrinology, 149(3), 942-949.

16. Enevoldsen, L., Stallknecht, B., Langfort, J., Petersen, L., Holm, C., Ploug, T., & Galbo, H. (2001). The effect of exercise training on hormone‐sensitive lipase in rat intra‐abdominal adipose tissue and muscle. The Journal of physiology, 536(3), 871-877.

17. Eves, N. D., & Plotnikoff, R. C. (2006). Resistance training and type 2 diabetes. Diabetes care, 29(8), 1933-1941.

18. Fernandez, C., Hansson, O., Nevsten, P., Holm, C., & Klint, C. (2008). Hormone-sensitive lipase is necessary for normal mobilization of lipids during submaximal exercise. American Journal of Physiology-Endocrinology And Metabolism, 295(1), E179-E186.

19. Fung, T. T., Malik, V., Rexrode, K. M., Manson, J. E., Willett, W. C., & Hu, F. B. (2009). Sweetened beverage consumption and risk of coronary heart disease in women. The American journal of clinical nutrition, 89(4), 1037-1042.

20. Greenberg, A. S., Egan, J. J., Wek, S. A., Garty, N. B., Blanchette-Mackie, E., & Londos, C. (1991). Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. Journal of Biological Chemistry, 266(17), 11341-11346.

21. Greenberg, A. S., Egan, J. J., Wek, S. A., Moos, M. C., Londos, C., & Kimmel, A. R. (1993). Isolation of cDNAs for perilipins A and B: sequence and expression of lipid droplet-associated proteins of adipocytes. Proceedings of the National Academy of Sciences, 90(24), 12035-12039.

22. Holm, C. (2003). Molecular mechanisms regulating hormone-sensitive lipase and lipolysis: Portland Press Limited.

23. Hornberger Jr, T. A., & Farrar, R. P. (2004). Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Canadian journal of applied physiology, 29(1), 16-31.

24. Hu, F. B., & Malik, V. S. (2010). Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiology & behavior, 100(1), 47-54.

25. Irvine, C., & Taylor, N. F. (2009). Progressive resistance exercise improves glycaemic control in people with type 2 diabetes mellitus: a systematic review. Australian Journal of Physiotherapy, 55(4), 237-246.

26. Jocken, J. W., Langin, D., Smit, E., Saris, W. H., Valle, C., Hul, G. B., Holm, C., Arner, P., & Blaak, E. E. (2007). Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. The Journal of Clinical Endocrinology & Metabolism, 92(6), 2292-2299.

27. Kawasaki, T., Kashiwabara, A., Sakai, T., Igarashi, K., Ogata, N., Watanabe, H., Ichiyanagi, K., & Yamanouchi, T. (2005). Long-term sucrose-drinking causes increased body weight and glucose intolerance in normal male rats. British journal of nutrition, 93(5), 613-618.

28. Kazeminasab, F., Marandi, M., Ghaedi, K., Esfarjani, F., & Moshtaghian, J. (2017). Effects of A 4-Week Aerobic Exercise on Lipid Profile and Expression of LXRα in Rat Liver. Cell Journal (Yakhteh), 19(1), 45.

 

29. La Fleur, S., Luijendijk, M., Van Rozen, A., Kalsbeek, A., & Adan, R. (2011). A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsiveness to a glucose load not explained by obesity. International journal of obesity, 35(4), 595.

30. Langfort, J., Ploug, T., Ihlemann, J., Saldo, M., Cecilia, H., & Galbo, H. (1999). Expression of hormone-sensitive lipase and its regulation by adrenaline in skeletal muscle. Biochemical Journal, 340(2), 459-465.

31. Lauro, D., Kido, Y., Castle, A. L., Zarnowski, M.-J., Hayashi, H., Ebina, Y., & Accili, D. (1998). Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nature genetics, 20(3), 294-298.

32. Londos, C., Gruia-Gray, J., Brasaemle, D., Rondinone, C., Takeda, T., Dwyer, N., Barber, T., Kimmel, A., & Blanchette-Mackie, E. (1996). Perilipin: possible roles in structure and metabolism of intracellular neutral lipids in adipocytes and steroidogenic cells. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity, 20, S97-101.

33. Lu, X., Gruia-Gray, J., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Londos, C., & Kimmel, A. R. (2001). The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mammalian Genome, 12(9), 741-749.

34. MacLaren, D., & Morton, J. (2011). Biochemistry for sport and exercise metabolism: John Wiley & Sons.

35. Malik, V. S., Schulze, M. B., & Hu, F. B. (2006). Intake of sugar-sweetened beverages and weight gain: a systematic review. The American journal of clinical nutrition, 84(2), 274-288.

36. Malik, V. S., Popkin, B. M., Bray, G. A., Després, J.-P., Willett, W. C., & Hu, F. B. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes. Diabetes care, 33(11), 2477-2483.

37. Mattes, R. D., Shikany, J. M., Kaiser, K. A., & Allison, D. B. (2011). Nutritively sweetened beverage consumption and body weight: a systematic review and meta‐analysis of randomized experiments. Obesity Reviews, 12(5), 346-365.

38. Michael, M. D., Kulkarni, R. N., Postic, C., Previs, S. F., Shulman, G. I., Magnuson, M. A., & Kahn, C. R. (2000). Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Molecular cell, 6(1), 87-97.

39. Miura, S., Tadaishi, M., Kamei, Y., & Ezaki, O. (2014). Mechanisms of exercise-and training-induced fatty acid oxidation in skeletal muscle. The Journal of Physical Fitness and Sports Medicine, 3(1), 43-53.

40. Nomura, S., Kawanami, H., Ueda, H., Kizaki, T., Ohno, H., & Izawa, T. (2002). Possible mechanisms by which adipocyte lipolysis is enhanced in exercise-trained rats. Biochemical and biophysical research communications, 295(2), 236-242.

41. Ogasawara, J., Sakurai, T., Rahman, N., Kizaki, T., Hitomi, Y., Ohno, H., & Izawa, T. (2004). Acute exercise alters Gαi2 protein expressions through the ubiquitin–proteasome proteolysis pathway in rat adipocytes. Biochemical and biophysical research communications, 323(3), 1109-1115.

42. Ogasawara, J., Sanpei, M., Rahman, N., Sakurai, T., Kizaki, T., Hitomi, Y., Ohno, H., & Izawa, T. (2006). β-Adrenergic receptor trafficking by exercise in rat adipocytes: roles of G-protein-coupled receptor kinase-2, β-arrestin-2, and the ubiquitin-proteasome pathway. The FASEB journal, 20(2), 350-352.

43. Oliveira, A. G., Carvalho, B. M., Tobar, N., Ropelle, E. R., Pauli, J. R., Bagarolli, R. A., Guadagnini, D., Carvalheira, J. B., & Saad, M. J. (2011). Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes, 60(3), 784-796.

44. Petridou, A., Tsalouhidou, S., Tsalis, G., Schulz, T., Michna, H., & Mougios, V. (2007). Long-term exercise increases the DNA binding activity of peroxisome proliferator-activated receptor gamma in rat adipose tissue. Metabolism, 56(8), 1029-1036.

45. Ribeiro, R., Lautt, W., Legare, D., & Macedo, M. (2005). Insulin resistance induced by sucrose feeding in rats is due to an impairment of the hepatic parasympathetic nerves. Diabetologia, 48(5), 976-983.

46. Richter, E. A., Garetto, L. P., Goodman, M. N., & Ruderman, N. B. (1982). Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin. Journal of Clinical Investigation, 69(4), 785.

47. Rodnick, K. J., Reaven, G. M., Azhar, S., Goodman, M. N., & Mondon, C. E. (1990). Effects of insulin on carbohydrate and protein metabolism in voluntary running rats. American Journal of Physiology-Endocrinology And Metabolism, 259(5), E706-E714.

48. Roepstorff, C., Vistisen, B., Donsmark, M., Nielsen, J. N., Galbo, H., Green, K. A., Hardie, D. G., Wojtaszewski, J. F., Richter, E. A., & Kiens, B. (2004). Regulation of hormone‐sensitive lipase activity and Ser563 and Ser565 phosphorylation in human skeletal muscle during exercise. The Journal of physiology, 560(2), 551-562.

49. Roepstorff, C., Donsmark, M., Thiele, M., Vistisen, B., Stewart, G., Vissing, K., Schjerling, P., Hardie, D. G., Galbo, H., & Kiens, B. (2006). Sex differences in hormone-sensitive lipase expression, activity, and phosphorylation in skeletal muscle at rest and during exercise. American Journal of Physiology-Endocrinology And Metabolism, 291(5), E1106-E1114.

50. Saha, P. K., Kojima, H., Martinez-Botas, J., Sunehag, A. L., & Chan, L. (2004). Metabolic Adaptations in the Absence of Perilipin increased β-oxidation and decreased hepatic glucose production associated with peripheral insulin resistance but normal glucose tolerance in perilipin-null mice. Journal of Biological Chemistry, 279(34), 35150-35158.

51. Sánchez-Lozada, L. G., Mu, W., Roncal, C., Sautin, Y. Y., Abdelmalek, M., Reungjui, S., Le, M., Nakagawa, T., Lan, H. Y., & Yu, X. (2010). Comparison of free fructose and glucose to sucrose in the ability to cause fatty liver. European journal of nutrition, 49(1), 1-9.

52. Shen, W.-J., Patel, S., Natu, V., & Kraemer, F. B. (1998). Mutational analysis of structural features of rat hormone-sensitive lipase. Biochemistry, 37(25), 8973-8979.

53. Soriguer, F., García‐Serrano, S., García‐Almeida, J. M., Garrido‐Sánchez, L., García‐Arnés, J., Tinahones, F. J., Cardona, I., Rivas‐Marín, J., Gallego‐Perales, J. L., & García‐Fuentes, E. (2009). Changes in the Serum Composition of Free‐fatty Acids During an Intravenous Glucose Tolerance Test. Obesity, 17(1), 10-15.

54. Stenson, B. M., Rydén, M., Venteclef, N., Dahlman, I., Pettersson, A. M., Mairal, A., Åström, G., Blomqvist, L., Wang, V., & Jocken, J. W. (2011). Liver X receptor (LXR) regulates human adipocyte lipolysis. Journal of Biological Chemistry, 286(1), 370-379.

 55. Strålfors, P., Björgell, P., & Belfrage, P. (1984). Hormonal regulation of hormone-sensitive lipase in intact adipocytes: identification of phosphorylated sites and effects on the phosphorylation by lipolytic hormones and insulin. Proceedings of the National Academy of Sciences, 81(11), 3317-3321.

56. Tansey, J., Sztalryd, C., Gruia-Gray, J., Roush, D., Zee, J., Gavrilova, O., Reitman, M., Deng, C.-X., Li, C., & Kimmel, A. (2001). Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proceedings of the National Academy of Sciences, 98(11), 6494-6499.

57. Tinahones, F., Garrido-Sanchez, L., Miranda, M., García-Almeida, J., Macias-Gonzalez, M., Ceperuelo, V., Gluckmann, E., Rivas-Marin, J., Vendrell, J., & García-Fuentes, E. (2010). Obesity and insulin resistance-related changes in the expression of lipogenic and lipolytic genes in morbidly obese subjects. Obesity surgery, 20(11), 1559-1567.

58. Watt, M. J., & Spriet, L. L. (2010). Triacylglycerol lipases and metabolic control: implications for health and disease. American Journal of Physiology-Endocrinology And Metabolism, 299(2), E162-E168.

59. Watt, M. J., Holmes, A. G., Steinberg, G. R., Mesa, J. L., Kemp, B. E., & Febbraio, M. A. (2004). Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. American Journal of Physiology-Endocrinology And Metabolism, 287(1), E120-E127.

60. Watt, M. J., Steinberg, G. R., Chan, S., Garnham, A., Kemp, B. E., & Febbraio, M. A. (2004). β-Adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling. The FASEB journal, 18(12), 1445-1446.

61. Watt, M. J., Holmes, A. G., Pinnamaneni, S. K., Garnham, A. P., Steinberg, G. R., Kemp, B. E., & Febbraio, M. A. (2006). Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. American Journal of Physiology-Endocrinology And Metabolism, 290(3), E500-E508.

62.  Williams, P. T. (2008). Reduced diabetic, hypertensive, and cholesterol medication use with walking. Medicine and science in sports and exercise, 40(3), 433.