نوع مقاله : مقاله پژوهشی Released under (CC BY-NC) license I Open Access I

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی

2 دانشیار دانشگاه شهرکرد

3 استادیار دانشگاه شهرکرد

چکیده

هدف: یکی از اختلالات مهم و شایع در افراد سالمند، آتروفی عضلانی وابسته به سن یا سارکوپنیاست. سارکوپنیا با کاهش چشمگیر در قدرت و حجم توده عضلانی همراه است. هدف از این مطالعه بررسی تاثیر دو نوع تمرین مقاومتی شدید و متوسط بر سطوح سرمی مایوستاتین و IGF-1 سرم رت­های سالمند بود.
روش‌شناسی: سی سر رت نر نژاد ویستار مسن (23 هفته) به صورت تصادفی در دو گروه تمرینی و گروه کنترل شامل گروه تمرین مقاومتی با شدت متوسط (9=n)، تمرین مقاومتی با شدت بالا (8=n)،  و گروه کنترل (8=n) قرار گرفتند. تمرین مقاومتی شامل 8 هفته تمرین مقاومتی نردبان با شدت زیاد ( 80% MVCC) و شدت متوسط (60% MVCC ) و 5 روز در هفته بود. بعد از دوره تمرین غلظت سرمی  IGF-1و مایوستاتین به روش الایزا اندازه­گیری شد.
یافته‌ها: غلظت مایوستاتین در گروه مقاومتی شدید (12/43±50/916) و مقاومتی متوسط (87/36±78/958) کاهش و غلظت IGF-1  در گروه مقاومتی شدید (49/15±27/156) و مقاومتی متوسط (42/7±77/141) افزایش معنی­داری داشت (05/0P<). بین تاثیر تمرین مقاومتی شدید و متوسط بر سطوح IGF-1 تفاوت معنی­دار (009/0p = ) بود. با این حال، در مورد مایوستاتین تفاوت معنی­داری مشاهده نشد.
نتیجه‌گیری: به نظر می­رسد تمرین مقاومتی با شدت­های متوسط و بالا می­تواند باعث تغییر سطوح استراحتی عوامل مرتبط با آتروفی عضلانی در رت­های سالمند شود. با این حال، بررسی بیشتر در نمونه­های انسانی ضروری به نظر می­رسد. 

کلیدواژه‌ها

عنوان مقاله [English]

The Eeffect of Eight Weeks Moderate and High Intensity Resistance Training on Resting Levels of Serum Myostatin and IGF-I in elderly Rats

نویسندگان [English]

  • Z Shanazari 1
  • M Faramarzi 2
  • E Banitalebi 3
  • R Hemmati 3

1 PhD student in exercise physiology

2 Associate Professor, Shahrekord University

3 Assistant professor, Shahrekord University

چکیده [English]

Aim: One of the most important and prevalent disorders in elderly people is age-related muscular atrophy or Sarcopenia. Sarcopenia is associated with a significant reduction in muscle strength and volume. The purpose of this study was to investigate the effect of moderate and high intensity resistance training on serum levels of myostatin and IGF-1 in elderly rats
Method: thirty male Wistar rats (23 months old) were randomly divided into two experimental and control group including moderate intensity resistance training (n = 10), high intensity resistance training (n = 10) and the control group (n = 10). Resistance training included 8 weeks of climbing a ladder with high intensity (80% MVCC) and moderate intensity (60% of MVCC) and 5 days a week. After completing training, serum concentration of IGF-1 and myostatin were measured using the ELISA method.
Results: Myostatin concentration in decreased in high (916.5±43.1) and moderate (958.8±36.9) intensity resistance groups and IGF-1 increases in high (156.3±15.5) and moderate (141.8±7.4) intensity resistance groups (p<0.05). Also, there was significant difference between the IGF-I levels in high and moderate resistance training (p=0.009). However, there was no significant difference in myostatin level between groups.
Conclusion: It seems that resistance training with moderate and high intensity can be change  the resting levels of factors associated with muscular atrophy in elderly rats. However, there id further need to evaluate in human participants. 

کلیدواژه‌ها [English]

  • Myostatin
  • IGF-1
  • Rats Elderly
  1. Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. (2010). Sarcopenia: Etiology, clinical consequences, intervention, and assessment. Osteoporosis International, 21(4): PP. 543-559.
  2. Morley John E., Argiles Josep M., Evans William J., Bhasin Shalender, Cella David, Deutz Nicolaas E. P., Doehner Wolfram, Fearon Ken C. H., Ferrucci Luigi, Hellerstein Marc K., Kalantar-Zadeh Kamyar, Lochs Herbert, MacDonald Neil, Mulligan Kathleen, Muscaritoli Maurizio, Ponikowski Piotr, Posthauer Mary Ellen, Fanelli Filippo Rossi, Schambelan Morrie, Schols
  3. Annemie M. W.J., Schuster Michael W. and Anker Stefan D. (2010). "Nutritional recommendations for the management of sarcopenia", Journal Am Med Dir Assoc.; 11: PP. 391-396.
  4. Walrand S, Guillet C, Salles J, Cano N, Boirie Y. (2011). Physiopathological mechanism of sarcopenia. Clin Geriatr Med, 27: PP. 365-385.
  5. Boirie Y. (2009). Physiopathological mechanism of sarcopenia. J Nutr Health Aging, 13: PP. 717-723.
  6. Siriett V, Salerno MS, Berry C, Nicholas G, Bower R, Kambadur R, Sharma M. (2007). Antagonism of myostatin enhances muscle regeneration during sarcopenia. Mol Ther, 15: PP. 1463- 1470.
  7. McPherron AC, Lawler AM, Lee SJ. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature; 387: PP. 83-90.
  8. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. (2003). Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol, 162: PP. 1135-1147.
  9. Falah, A., Khayambashi, K., Rahnama, N., & Ghoddousi, N. (2012). Effects of hip abductor and external rotators strengthening and quadriceps strengthening in females with patellofemoral pain syndrome: A comparative study. Journal of Research in Rehabilitation Sciences, 8(2), 354-62.

10. Willoughby, D.S., 2004. Effects of heavy resistance training on myostatin mRNA and protein expression. Medicine and science in sports and exercise, 36(4), pp.574-582.

11. Rubin, M. R., Kraemer, W. J., Maresh, C. M., Volek, J. S., Ratamess, N. A., Vanheest, J. L., ... & GÓmez, A. L. (2005). High-affinity growth hormone binding protein and acute heavy resistance exercise. Medicine & Science in Sports & Exercise, 37(3), 395-403.

12. Saremi, A., Gharakhanloo, R., Sharghi, S., Gharaati, M. R., Larijani, B., & Omidfar, K. (2010). Effects of oral creatine and resistance training on serum myostatin and GASP-1. Molecular and cellular endocrinology, 317(1), 25-30.

13. Diel, P., Schiffer, T., Geisler, S., Hertrampf, T., Mosler, S., Schulz, S., ... & Adler, M. (2010). Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR. Molecular and cellular endocrinology, 330(1), 1-9.

14. Willoughby, D. S., & Wilborn, C. D. (2006). Estradiol in females may negate skeletal muscle myostatin mRNA expression and serum myostatin propeptide levels after eccentric muscle contractions. Journal of sports science & medicine, 5(4), 672.

15. Machida, S., & Booth, F. W. (2004). Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proceedings of the Nutrition Society, 63(2), 337-340.

16. Huygens, W., Thomis, M. A., Peeters, M. W., Aerssens, J., Janssen, R., Vlietinck, R. F., & Beunen, G. (2004). Linkage of myostatin pathway genes with knee strength in humans. Physiological genomics, 17(3), 264-270.

17. Goldspink, G. (2005). Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology, 20(4), 232-238.

18. Kostka T, Arsac LM, Patricot MC, Berthouze  SE, Lacour JR, Bonnefoy M. Leg extensor power and dehydroepiandrosterone sulfate, insulin-like growth factor-I and testosterone in healthy active elderly people. Eur J Appl Physiol 2000; 82(1-2): 83-90.

19. Cappon, J., Brasel, J. A., Mohan, S. U. B. B. U. R. A. M. A. N., & Cooper, D. M. (1994). Effect of brief exercise on circulating insulin-like growth factor I. Journal of applied physiology, 76(6), 2490-2496.

20. Copeland, J. L., Consitt, L. A., & Tremblay, M. S. (2002). Hormonal responses to endurance and resistance exercise in females aged 19–69 years. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57(4), B158-B165.

21. Walker, K. S., Kambadur, R., Sharma, M., & Smith, H. K. (2004). Resistance training alters plasma myostatin but not IGF-1 in healthy men. Medicine and science in sports and exercise, 36(5), 787-793.

22. Seo, D. I., Jun, T. W., Park, K. S., Chang, H., So, W. Y., & Song, W. (2010). 12 weeks of combined exercise is better than aerobic exercise for increasing growth hormone in middle-aged women. International journal of sport nutrition and exercise metabolism, 20(1), 21-26.

23. Soci, U. P. R., Fernandes, T., Hashimoto, N. Y., Mota, G. F., Amadeu, M. A., Rosa, K. T., ... & Oliveira, E. M. (2011). MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological genomics, 43(11), 665-673.

24. Macedo, A. G., Krug, A. L., Herrera, N. A., Zago, A. S., Rush, J. W., & Amaral, S. L. (2014). Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle. The Journal of steroid biochemistry and molecular biology, 143, 357-364.

25. de Cássia Marqueti, R., Almeida, J. A., Nakagaki, W. R., Guzzoni, V., Boghi, F., Renner, A., ... & Selistre-de-Araújo, H. S. (2017). Resistance training minimizes the biomechanical effects of aging in three different rat tendons. Journal of biomechanics, 53, 29-35.

26. Welle, S., Bhatt, K., Shah, B., & Thornton, C. A. (2002). Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62–77 and 21–31yr old men. Experimental gerontology, 37(6), 833-839.

27. Mero, A. A., Hulmi, J. J., Salmijärvi, H., Katajavuori, M., Haverinen, M., Holviala, J., & Selänne, H. (2013). Resistance training induced increase in muscle fiber size in young and older men. European journal of applied physiology, 113(3), 641-650.

28. Dalbo, V. J., Roberts, M. D., Sunderland, K. L., Poole, C. N., Stout, J. R., Beck, T. W., ... & Kerksick, C. M. (2011). Acute loading and aging effects on myostatin pathway biomarkers in human skeletal muscle after three sequential bouts of resistance exercise. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 66(8), 855-865.

29. Roth, S. M., Martel, G. F., Ferrell, R. E., Metter, E. J., Hurley, B. F., & Rogers, M. A. (2003). Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Experimental biology and medicine, 228(6), 706-709.

30. Hittel, D. S., Axelson, M., Sarna, N., Shearer, J., Huffman, K. M., & Kraus, W. E. (2010). Myostatin decreases with aerobic exercise and associates with insulin resistance. Medicine and science in sports and exercise, 42(11), 2023.

31. Negaresh, R., Ranjbar, R., Gharibvand, M. M. M., Habibi, A., & Moktarzade, M. (2017). Effect of 8-Week Resistance Training on Hypertrophy, Strength, and Myostatin Concentration in Old and Young Men. Iranian Journal of Ageing, 12(1), 56-67.

32. Hulmi, J. J., Ahtiainen, J. P., Kaasalainen, T., PöLLANEN, E. I. J. A., Hakkinen, K., Alen, M.,  and  Mero, A. A. (2007). Postexercise myostatin and activin IIb mRNA levels: effects of strength training. Medicine & Science in Sports & Exercise, 39(2), 289-297.

33. Willoughby, D. S. (2004). Effects of an alleged myostatin-binding supplement and heavy resistance training on serum myostatin, muscle strength and mass, and body composition. International journal of sport nutrition and exercise metabolism, 14(4), 461-472.

34. Joulia-Ekaza, D., & Cabello, G. (2007). The myostatin gene: physiology and pharmacological relevance. Current opinion in pharmacology, 7(3), 310-315.

35. Wehling, M., Cai, B., & Tidball, J. G. (2000). Modulation of myostatin expression during modified muscle use. The FASEB Journal, 14(1), 103-110.

36. Tofighi, A., et al., Effects of Aerobic, Resistance, and Concurrent Training on Secretion of Growth Hormone and Insulin-Like Growth Factor-1 in Elderly Women. Journal of Isfahan Medical School, 2012. 30(184).

37. Lovell, D. I., Cuneo, R., Wallace, J., & McLellan, C. (2012). The hormonal response of older men to sub-maximum aerobic exercise: The effect of training and detraining. Steroids, 77(5), 413-418.

 

38. Nishida, Y., Matsubara, T., Tobina, T., Shindo, M., Tokuyama, K., Tanaka, K., & Tanaka, H. (2010). Effect of low-intensity aerobic exercise on insulin-like growth factor-I and insulin-like growth factor-binding proteins in healthy men. International journal of endocrinology, 2010.

39. Schmitz, K. H., Ahmed, R. L., & Yee, D. (2002). Effects of a 9-month strength training intervention on insulin, insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1, and IGFBP-3 in 30–50-year-old women. Cancer Epidemiology and Prevention Biomarkers, 11(12), 1597-1604.

40. Pyka, G., Taaffe, D. R., & Marcus, R. (1994). Effect of a sustained program of resistance training on the acute growth hormone response to resistance exercise in older adults. Hormone and metabolic research, 26(07), 330-333.

41. Jensen, G. L. (2008). Inflammation: roles in aging and sarcopenia. Journal of Parenteral and Enteral Nutrition, 32(6), 656-659.

42. Schwarz, A. J., Brasel, J. A., Hintz, R. L., Mohan, S. U. B. B. U. R. A. M. A. N., & Cooper, D. M. (1996). Acute effect of brief low-and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. The Journal of Clinical Endocrinology & Metabolism, 81(10), 3492-3497.

43. Eliakim, A., Brasel, J. A., & Cooper, D. M. (2000). Exercise and the Growth Hormone—Insulin-Like Growth Factor-1 Axis. In Sports Endocrinology (pp. 77-95). Humana Press.

44. Coffey, V. G., & Hawley, J. A. (2007). The molecular bases of training adaptation. Sports medicine, 37(9), 737-763.

45. Chadan, S. G., Dill, R. P., Vanderhoek, K., & Parkhouse, W. S. (1999). Influence of physical activity on plasma insulin-like growth factor-1 and insulin-like growth factor binding proteins in healthy older women. Mechanisms of ageing and development, 109(1), 21-34.

46. Berg, U., & Bang, P. (2004). Exercise and circulating insulin-like growth factor I. Hormone Research in Paediatrics, 62(Suppl. 1), 50-58.

47. Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. The international journal of biochemistry & cell biology, 37(10), 1974-1984.

48. Scheett, T. P., Nemet, D., Stoppani, J., Maresh, C. M., Newcomb, R., & Cooper, D. M. (2002). The effect of endurance-type exercise training on growth mediators and inflammatory cytokines in pre-pubertal and early pubertal males. Pediatric research, 52(4), 491-497.

49. Lee, S. J., & McPherron, A. C. (2001). Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences, 98(16), 9306-9311.