نوع مقاله : مقاله پژوهشی Released under (CC BY-NC) license I Open Access I

نویسنده

گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه گیلان، رشت/ایران

چکیده

هدف : در این مطالعه سطح آنزیم‌های پیرووات‌دهیدروژنازکیناز 4 (PDK-4) و کارنیتین‌پالمیتوئیل‌ترنسفراز 1 (CPT-1) و ارتباط آن‌ها با سطوح گلوکز، لاکتات و نیم‌رخ لیپید خون در پاسخ به یک جلسه فعالیت کراس‌فیت در شرایط ناشتایی و سیری مورد بررسی قرار گرفت.
روش پژوهش: 23 دانشجوی علوم ورزشی زن سالم با حداقل 3 سال سابقه تمرین منظم به شکل تصادفی در 4 گروه کنترل ناشتا، کنترل سیر، کراس‌فیت ناشتا و کراس‌فیت سیر قرار گرفتند. در پایان جلسه میزان سختی کار با مقیاس OMNI سنجیده شده و نمونه‌گیری خون وریدی از آزمودنی‌ها انجام شد. از آزمون‌های آنالیز واریانس دو سویه و همبستگی پیرسون در سطح آلفای 05/0 در SPSS 22 برای بررسی فرضیه‌های پژوهش استفاده گردید.
یافته‌ها: میانگین سطوح گلوکز، تری‌گلیسرید، کلسترول، LDL، HDL، PDK-4 و CPT-1 بین گروه‌‌ها تفاوت معنی‌داری نداشت (05/0 < P). سطح پلاسمایی لاکتات در گروه‌های فعالیت ورزشی کراس‌فیت نسبت به گروه‌های کنترل بالاتر بود (045/0 = P). سطح سرمی PDK-4 ارتباط مثبت معنی‌دار با CPT-1 (007/0 = P، 550/0 = r) و ارتباط منفی معنی‌داری با سطح پلاسمایی لاکتات داشت (003/0 = P، 600/0 - = r).
نتیجه‌گیری: وضعیت سیری و ناشتایی تأثیری بر شاخص‌های متابولیک مد نظر در حالت استراحت و فعالیت نداشت. سطوح بالاتر لاکتات پس از فعالیت ورزشی کراس‌فیت و عدم تفاوت سطوح PDK-4 و CPT-1 با وضعیت استراحتی، احتمالا نشان از سهم بیشتر گلوکز در تولید انرژی از مسیرهای هوازی و بی‌هوازی در این پروتکل دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of a single session of Crossfit exercise in fasting and fed state on PDK4 and CTP-1 levels and their relationship with blood glucose, lactate and lipid profile in active female students

نویسنده [English]

  • Maryam Ebrahimi

department of exercise physiology, Faculty of physical education and sport sciences, University of Guilan, Rasht/Iran

چکیده [English]

Objective: in this research, levels of metabolic enzymes, pyruvate dehydrogenase kinase 4 (PDK-4) and carnitine palmitoyltransferase 1 (CPT-1) and their relationship with blood glucose, lactate and lipid profile were studied in response to a single bout of Crossfit exercise in fasting and fed state.
Methods: 23 healthy female sport science students with minimum of 3 years regular training were randomly assigned into fast control, fed control, fast Crossfit and fed Crossfit groups. At the end of the session, rating of perceived exertion was estimated by OMNI scale and blood samples were collected. Two-way analysis of variances and Pearson test were used at the alpha level .05 in SPSS 22.
Results: glucose, TG, cholesterol, LDL, HDL, PDK-4 and CPT-1 mean levels had not any significant differences between groups (P > .05). Plasma lactate level was higher in Crossfit groups compared to controls (P = .045). Serum PDK-4 was positively correlated with CPT-1 (r = .550, P = .007) and negatively correlated with lactate levels (r = .600, P = .003).
Conclusion: fasting and feeding had not any effect on metabolic indices, nor in resting neither after exercise. Higher lactate levels after Crossfit exercise and no difference in PDK-4 and CPT-1 compared with resting, probably suggest more contribution of glucose for energy production via aerobic and anaerobic pathways in this protocol.

کلیدواژه‌ها [English]

  • metabolic enzymes
  • functional training
  • metabolism
  1. Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, et al. (2014). Comprehensive review on lactate metabolism in human health. Mitochondrion.17:76-100.
  2. Aird TP, Davies RW, Carson BP. (2018). Effects of fasted vs fed‐state exercise on performance and post‐exercise metabolism: A systematic review and meta‐analysis. Scandinavian journal of medicine & science in sports.28(5):1476-93.
  3. Astorino TA, Schubert MM. (2018). Changes in fat oxidation in response to various regimes of high intensity interval training (hiit). European Journal of Applied Physiology.118(1):51-63.
  4. Carnevali Jr L, Eder R, Lira F, Lima W, Gonçalves D, Zanchi N, et al. (2012). Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats. Brazilian Journal of Medical and Biological Research.45(8):777-83.
  5. Cluberton L, McGee SL, Murphy RM, Hargreaves M. (2005). Effect of carbohydrate ingestion on exercise-induced alterations in metabolic gene expression. J Appl Physiol.99:1359-63.
  6. Durkalec-Michalski K, Zawieja EE, Podgórski T, Łoniewski I, Zawieja BE, Warzybok M, et al. (2018). The effect of chronic progressive-dose sodium bicarbonate ingestion on crossfit-like performance: A double-blind, randomized cross-over trial. PloS one.13(5):e0197480.
  7. Escobar KA, Morales J, Vandusseldorp TA. (2017). Metabolic profile of a crossfit training bout. Journal of Human Sport and Exercise.12(4):1248-55.
  8. Eun-Ju C, Wi-Young S, Jeong TT. (2017). Effects of the crossfit exercise data analysis on body composition and blood profiles. Iranian journal of public health.46(9):1193-203.
  9. Glassman G. (2010). Crossfit level 1. Training guide seminars training guide reference. CrossFit Journal, May.15.
  10. Hall UA, Edin F, Madsen K. (2015). Whole-body fat oxidation increases more by prior exercise than overnight fasting. Medicine & Science in Sports & Exercise.47(5S):826.
  11. Heigenhauser GJ, Parolin ML. Role of pyruvate dehydrogenase in lactate production in exercising human skeletal muscle. (Springer;1999). Hypoxia. p. 205-18.
  12. Heinrich KM, Becker C, Carlisle T, Gilmore K, Hauser J, Frye J, et al. (2015). High‐intensity functional training improves functional movement and body composition among cancer survivors: A pilot study. European journal of cancer care.24(6):812-7.
  13. Jacob N, Novaes JS, Behm DG, Vieira JG, Dias MR, Vianna JM. (2020). Characterization of hormonal, metabolic, and inflammatory responses in crossfit® training: A systematic review. Frontiers in Physiology.11.
  14. Jaspers RT, Zillikens MC, Friesema EC, delli Paoli G, Bloch W, Uitterlinden AG, et al. (2017). Exercise, fasting, and mimetics: Toward beneficial combinations? The FASEB Journal.31(1):14-28.
  15. Jeoung NH, Harris RA. (2010). Role of pyruvate dehydrogenase kinase 4 in regulation of blood glucose levels. Korean diabetes journal.34(5):274-83.
  16. Maté-Muñoz JL, Lougedo JH, Barba M, Cañuelo-Márquez AM, Guodemar-Pérez J, García-Fernández P, et al. (2018). Cardiometabolic and muscular fatigue responses to different crossfit® workouts. Journal of sports science & medicine.17(4):668.
  17. Murawska-Cialowicz E, Wojna J, Zuwala-Jagiello J. (2015). Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J Physiol Pharmacol.66(6):811-21.
  18. Noland RC. Exercise and regulation of lipid metabolism. (Elsevier;2015). Progress in molecular biology and translational science. p. 39-74.
  19. Shaw SB, Dullabh M, Forbes G, Brandkamp J-L, Shaw I. (2015). Analysis of physiological determinants during a single bout of crossfit. International Journal of Performance Analysis in Sport.15(3):809-15.
  20. Thompson WR. (2017). Worldwide survey of fitness trends for 2018: The crep edition. ACSM's Health & Fitness Journal.21(6):10-9.
  21. Thum JS, Parsons G, Whittle T, Astorino TA. (2017). High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PloS one.12(1):e0166299.
  22. Tibana RA, de Almeida LM, Frade de Sousa NM, Nascimento Dda C, Neto I, de Almeida JA, et al. (2016). Two consecutive days of crossfit training affects pro and anti-inflammatory cytokines and osteoprotegerin without impairments in muscle power. Front Physiol.7(6):260.
  23. Tibana RA, De Sousa NMF, Prestes J, Voltarelli FA. (2018). Lactate, heart rate and rating of perceived exertion responses to shorter and longer duration crossfit® training sessions. Journal of Functional Morphology and Kinesiology.3(4):60.
  24. Wang L, Sahlin K. (2012). The effect of continuous and interval exercise on pgc‐1α and pdk4 mrna in type i and type ii fibres of human skeletal muscle. Acta physiologica.204(4):525-32.
  25. Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. (2014). The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutrition & metabolism.11(1):1-9.