نوع مقاله : مقاله پژوهشی Released under (CC BY-NC) license I Open Access I

نویسندگان

1 گروه فیزیولوژی ورزشی و حرکات اصلاحی، دانشکده علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران

2 گروه کلینیکال پاتولوژی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

چکیده

هدف از پژوهش حاضر بررسی تاثیر هشت تمرین هوازی با شدت متوسط با و بدون مصرف مکمل نانوذره و ذره‌نمکی اکسید روی بر شاخصهای اکسیداتیو بافت کبد موش های آلوده شده با BPA بود.

مواد و روش‌ها: 60 سر موش در 12 گروه 5 تایی: 1) کنترل، 2) BPA، 3) تمرین هوازی، 4) تمرین هوازی+BPA، 5) نانوذره، 6) نانوذره+BPA، 7) ذره نمکی اکسید روی، 8) ذره نمکی اکسید روی+BPA، 9) تمرین+ نانوذره، 10) تمرین+ نانوذره+BPA، 11) تمرین+ذره نمکی اکسید روی و 12) تمرین+ذره نمکی اکسید روی+BPA قرار گرفتند. تمرین هوازی با شدت 75ـ50 درصد VO2max و به مدت 64ـ25 دقیقه اجرا شد. مکمل‌ روی تا اتمام دوره تزریق شد.

نتایج: فعالیت آنزیم‌های GPX، SOD و کاتالاز در گروه تمرین ورزشی و گروه‌‌های BPA افزایش معنی‌داری نشان داد، در بررسی مقادیر TAC مشخص شد تمرین ورزشی به تنهایی سبب کاهش معنی‌دار (001/0=P) و گروه‌های دریافت کننده مکمل‌های Zno و NanoZno سبب افزایش معنی‌دار این شاخص نسبت به گروه کنترل سالم شد (001/0p=). این در حالی بود که در بررسی MDA و AOPP مشخص شد گروه‌های BPA افزایش شدیدی در این متغیرها ایجاد کردند که مکمل سبب کاهش معنی‌دار این متغیرها شد و بیشترین کاهش مربوط به BPA+Nano و BPA+Zno بود (001/0p= ).

نتیجه‌گیری: دریافت BPA ظرفیت آنتی‌اکسیدانتی را تخریب می‌نماید. با وجود این، ترکیب تمرین ورزشی با شدت متوسط و مکمل‌های اکسید روی (به ویژه مکمل به تنهایی) ممکن است کینتیک آلوده‌شدن با BPA را با مهار سیستم اکسیدانی تغییر دهد و متعاقب آن بهبود وضعیت هپاتوسیت‌ها را بدنبال داشته باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Response of Liver Tissue Oxidative Indices to Bisphenol-A intoxicated Rats to Eight Weeks of Aerobic Training with and without Zinc Supplementation (Zinc Nanoparticles and Nanoparticles)

نویسندگان [English]

  • Mohammad Salmasi 1
  • Asghar Tofighi 1
  • Siamak Asri 2
  • Javad Tolouei Azar 1

1 Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran

2 Department of Internal Diseases and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

چکیده [English]

Aims: The purpose of this study was to investigate the effect of moderate-intensity aerobic exercise with and without supplementation of nanoparticles and zinc oxide salts on hepatocyte oxidative markers in BPA-intoxicated rats.

Methods: 60 male rats were divided into 12 groups: 1) Control; 2) BPA; 3) Exercise; 4) Exercise+BPA; 5) Nanoparticle supplementation (Nano); 6) Nanoparticle+BPA (Nano+BPA); 7) Zinc oxide salt (Zno); 8) Zinc oxide salt+BPA (Zno+BPA); 9) Exercise+Nano; 10) Exercise+Nano+BPA; 11) Exercise+Zno; and 12) Exercise+Zno+BPA. The exercise program was performed for eight weeks with 50-75% VO2max for 25 to 64 minutes. Nanoparticles supplemented give with 5 mg/kg 5 days a week for eight weeks.

Results: The activity of the antioxidant enzymes GPX, SOD and Catalase increase significantly in the BPA group in addition to the increase in the exercise group, but TAC status decreased significantly in the exercise group alone (p = 0.001) and Zno and NanoZno groups significantly increased this index compared to the healthy control group (p = 0.001). Interestingly, in MDA and AOPP, the BPA groups showed a significant increase in these variables, supplementation caused a significant decrease in these variables, and the highest reduction was in BPA+Nano and BPA+Zno (p = 0.001).

Conclusion: BPA causes reactive changes in antioxidant capacity, it destroys total antioxidant capacity. However, oxidative index studies revealed that a combination of moderate-intensity exercise and zinc oxide supplements (especially supplementation alone) may alter the kinetics of BPA contamination by inhibiting the oxidative system and subsequently improving hepatocyte status.

کلیدواژه‌ها [English]

  • Exercise training"
  • Zinc"
  • Bisphenol-A"
  • Oxidative markers"
  • "
  • Hepatocyte"
  1. Amouzad Mahdirejei H, Fadaei Reyhan Abadei S, Abbaspour Seidi A, Eshaghei Gorji N, Rahmani Kafshgari H, Ebrahim Pour M, et al. (2014). Effects of an eight-week resistance training on plasma vaspin concentrations, metabolic parameters levels and physical fitness in patients with type 2 diabetes. Cell J.16(3):367-74.
  2. Asri-Rezaei S, Tamaddonfard E, Ghasemsoltani-Momtaz B, Erfanparast A, Gholamalipour S. (2015). Effects of crocin and zinc chloride on blood levels of zinc and metabolic and oxidative parameters in streptozotocin-induced diabetic rats. Avicenna journal of phytomedicine.5(5):403.
  3. Baghaiee B, Nakhostin-Roohi B, Siahkuhian M, Bolboli L. (2015). Effect of oxidative stress and exercise-induced adaptations. Journal of Gorgan University of Medical Sciences.17(2):1-15.
  4. Batista LM, Lima GRDM, De Almeida ABA, Magri LDP, Calvo TR, Ferreira AL, et al. (2015). Ulcer healing and mechanism (s) of action involved in the gastroprotective activity of fractions obtained from syngonanthus arthrotrichus and syngonanthus bisulcatus. BMC complementary and alternative medicine.15(1):391.
  5. Bindhumol V, Chitra K, Mathur P. (2003). Bisphenol a induces reactive oxygen species generation in the liver of male rats. Toxicology.188(2-3):117-24.
  6. Bindhumol V, Chitra KC, Mathur PP. (2003). Bisphenol a induces reactive oxygen species generation in the liver of male rats. Toxicology.188(2-3):117-24.
  7. Calafat AM, Ye X, Wong L-Y, Reidy JA, Needham LL. (2007). Exposure of the us population to bisphenol a and 4-tertiary-octylphenol: 2003–2004. Environmental health perspectives.116(1):39-44.
  8. Cardoso AM, Bagatini MD, Roth MA, Martins CC, Rezer JF, Mello FF, et al. (2012). Acute effects of resistance exercise and intermittent intense aerobic exercise on blood cell count and oxidative stress in trained middle-aged women. Braz J Med Biol Res.45(12):1172-82.
  9. Council NR. Nutrient requirements of poultry: 1994: National Academies Press; 1994.
  10. Edwards HM, 3rd, Baker DH. (1999). Bioavailability of zinc in several sources of zinc oxide, zinc sulfate, and zinc metal. J Anim Sci.77(10):2730-5.
  11. Ehsani FM, Habibi MA, Tofighi A, Khadem AMH, Tolouei AJ. (2019). Evaluation of hepatokine and liver enzymes changes in obese rats with the high-fat diet to different training modalities: An experimental study.
  12. Espanani HR, Faghfoori Z, Izadpanah M, Babadi VY. (2015). Toxic effect of nano-zinc oxide. Bratisl Lek Listy.116(10):616-20.
  13. Flora S. (2007). Role of free radicals and antioxidants in health and disease. Cellular and Molecular Biology.53(1):1-2.
  14. Gharibi S, Sadighara P, Mohajerfar T, Mazaherinezhad-Fard R, Farkhondeh T. (2013). Bisphenol-a induces oxidative damage in the liver of chicken embryos. Zahedan Journal of Research in Medical Sciences.15(10):12-5.
  15. Ghiasvand Reza DM, Djazayery Seyed  Abolghassem, , Keshavarz  Seyed  Ali HM. (2008). Effects  of  eicosapentaenoic acid  and  vitamin  e  on  the  plasma  levels  of  antioxidant  vitamins  and  inflammatory markers, and on erythrocyte antioxidant enzyme activities,  in  male  basketball  players. . Journal  of  Sports  Science  and  Medicine158-162
  16. Gomez-Cabrera M-C, Domenech E, Viña J. (2008). Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free radical biology and medicine.44(2):126-31.
  17. Gomez-Cabrera MC, Domenech E, Vina J. (2008). Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic Biol Med.44(2):126-31.
  18. Habibi Maleki A, Tofighi A, Ghaderi Pakdel F, Tolouei Azar J. (2020). The effect of 12 weeks of high intensity interval training and high intensity continuous training on vegf, pedf and pai-1 levels of visceral and subcutaneous adipose tissues in rats fed with high fat diet. Sport Physiology & Management Investigations.12(1):101-20.
  19. Habibi Maleki A, Tofighi A, Ghaderi Pakdel F, Tolouei Azar J, Ehsani Far M. (2020). The effect of three different exercise training on blood lipid profile, fetuin-a, and fibroblast growth factor 21 (fgf-21) in visceral adipose tissue of obese rats. Jundishapur Scientific Medical Journal.19(1):109-22.
  20. Halden RU. (2010). Plastics and health risks. Annual review of public health.31:179-94.
  21. Handy RD, von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology.17(4):287-314.
  22. Hassan ZK, Elobeid MA, Virk P, Omer SA, ElAmin M, Daghestani MH, et al. (2012). Bisphenol a induces hepatotoxicity through oxidative stress in rat model. Oxid Med Cell Longev.2012:194829.
  23. Hu HL, Chen RD, Ma LH. (1992). Protective effect of zinc on liver injury induced by d-galactosamine in rats. Biol Trace Elem Res.34(1):27-33.
  24. Kabuto H, Amakawa M, Shishibori T. (2004). Exposure to bisphenol a during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life sciences.74(24):2931-40.
  25. Kalousova M, Skrha J, Zima T. (2002). Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological research.51(6):597-604.
  26. Koch LG, Meredith TA, Fraker TD, Metting PJ, Britton SL. (1998). Heritability of treadmill running endurance in rats. Am J Physiol.275(5):R1455-60.
  27. Kumar SD, Vijaya M, Samy RP, Dheen ST, Ren M, Watt F, et al. (2012). Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radical Biology and Medicine.53(8):1595-606.
  28. Li XD, Sun GF, Zhu WB, Wang YH. (2015). Effects of high intensity exhaustive exercise on sod, mda, and no levels in rats with knee osteoarthritis. Genet Mol Res.14(4):12367-76.
  29. Maleki A, Tofighi A, Pakdel F, Azar J. (2019). The effect of 12 weeks of moderate intensity continuous training (mict) on inflammatory and angiogenesis factors of visceral and subcutaneous adipose tissue in obese rats: A semi-experimental study. Urmia Medical Journal.30(4):300-14.
  30. McCloskey TW, Todaro JA, Laskin DL. (1992). Lipopolysaccharide treatment of rats alters antigen expression and oxidative metabolism in hepatic macrophages and endothelial cells. Hepatology.16(1):191-203.
  31. Meng Z, Tian S, Yan J, Jia M, Yan S, Li R, et al. (2019). Effects of perinatal exposure to bpa, bpf and bpaf on liver function in male mouse offspring involving in oxidative damage and metabolic disorder. Environmental Pollution.
  32. Mourad IM, and YASSER A. Khadrawy. ((2012)). "The sensetivity of liver, kidney andtestis of rats to oxidative stress induced by different doses of bisphenol a." Life 50 : 19.
  33. Mourad IM, Khadrawy YA. (2012). The sensetivity of liver, kidney andtestis of rats to oxidative stress induced by different doses of bisphenol a. Life.50:19.
  34. Nair V, Turner GA. (1984). The thiobarbituric acid test for lipid peroxidation: Structure of the adduct with malondialdehyde. Lipids.19(10):804-5.
  35. Nazarizadeh A, Asri-Rezaei S. (2015). Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. AAPS PharmSciTech.DOI: 10.1208/s12249-015-0405-y.
  36. Pant J, Ranjan P, Deshpande SB. (2011). Bisphenol a decreases atrial contractility involving no‐dependent g‐cyclase signaling pathway. Journal of Applied Toxicology.31(7):698-702.
  37. Pathak GC, Gupta B, Pandey N. (2012). Improving reproductive efficiency of chickpea by foliar application of zinc. Brazilian Journal of Plant Physiology.24:173-80.
  38. Pereira AdS, Spagnol AR, Luciano E, Leme JACdA. (2016). Influence of aerobic exercise training on serum markers of oxidative stress in diabetic rats. Journal of Physical Education.27.
  39. Poirier B, Lannaud-Bournoville M, Conti M, Bazin R, Michel O, Bariéty J, et al. (2000). Oxidative stress occurs in absence of hyperglycaemia and inflammation in the onset of kidney lesions in normotensive obese rats. Nephrology Dialysis Transplantation.15(4):467-76.
  40. Rawi SM, Mourad IM, Sayed DA. (2011). Biochemical changes in experimental diabetes before and after treatment with mangifera indica and psidium guava extracts. Int J Pharm Bio Sci.2(2):29-41.
  41. Rochester JR, Bolden AL. (2015). Bisphenol s and f: A systematic review and comparison of the hormonal activity of bisphenol a substitutes. Environmental health perspectives.123(7):643.
  42. Saritaş N, Uyanik F, Hamurcu Z. (2011). Effects of acute twelve minute run test on oxidative stress and antioxidant enzyme activities. African Journal of Pharmacy and Pharmacology.5(9):1218-22.
  43. Schuch FB, Vasconcelos-Moreno MP, Borowsky C, Zimmermann AB, Wollenhaupt-Aguiar B, Ferrari P, et al. (2014). The effects of exercise on oxidative stress (tbars) and bdnf in severely depressed inpatients. Eur Arch Psychiatry Clin Neurosci.264(7):605-13.
  44. Shin YA, Lee JH, Song W, Jun TW. (2008). Exercise training improves the antioxidant enzyme activity with no changes of telomere length. Mech Ageing Dev.129(5):254-60.
  45. Sunderman FW, Jr. (1995). The influence of zinc on apoptosis. Ann Clin Lab Sci.25(2):134-42.
  46. Tolouei Azar J, Habibi Maleki A, Moshari S, Razi M. (2020). The effect of different types of exercise training on diet-induced obesity in rats, cross-talk between cell cycle proteins and apoptosis in testis. Gene.754:144850.
  47. Witko V, Nguyen AT, Descamps‐Latscha B. (1992). Microtiter plate assay for phagocyte‐derived taurine‐chloramines. Journal of clinical laboratory analysis.6(1):47-53.