نوع مقاله : مقاله پژوهشی Released under (CC BY-NC) license I Open Access I

نویسندگان

1 استادیار دانشگاه فرهنگیان البرز

2 دانشگاه آزاد اسلامی واحد تهران مرکز

3 گروه تربیت بدنی و علوم ورزشی واحد تهران مرکزی، دانشگاه آزاد اسلامی

چکیده

هدف: هدف از پژوهش حاضر بررسی تأثیر هشت هفته تمرین مقاومتی فزاینده و مکمل BCAA نانولیپوزوم بر بیان ژن MiR-200a ،HSP60 میتوکندری عضله سولئوس و IGF-1 سرمی رت‌های نر سالمند بود.

روش‌: 32 سر موش صحرایی نر 24 ماهه در 4 گروه کنترل، مکمل (BCAA نانولیپوزوم)، توام (تمرین مقاومتی+ مکمل و تمرین تقسیم شدند. تمرین مقاومتی شامل هشت هفته تمرین نردبان با شدت متوسط (70 درصد از MVCC) و پنج روز در هفته بود. در گروه‌های مکمل و توام 5 روز در هفته و به مدت 8 هفته، مکمل BCAA نانولیپوزوم و به میزان 600 میلی گرم به ازای هر کیلوگرم وزن بدن به صورت گاواژ دریافت شد. MiR200a و HSP60 با استفاده از روش Real-time PCRو IGF-1 سرمی به روش الایزا به دست آمد. تجزیه و تحلیل ﺁﻣﺎری با تحلیل واریانس دوطرفه، یکطرفه ﻭ ﺁﺯﻣﻮﻥ تعقیبی توکی انجام شد.

یافته‌ها: نتایج بیانگر کاهش معنی‌دار MiR-200aو افزایش معنی‌دار بیان ژن HSP60 عضله سولئوس و IGF-1سرمی در گروه توام و تمرین به نسبت گروه‌های مکمل و کنترل بود (001/0=p). تفاوت معنی داری بین دو گروه کنترل و مکمل مشاهده نشد (105/0=p).

نتیجه‌گیری: اثر مستقیم miR-200a و HSP60 بر سیگنال IGF-1 اثر مهمی بر رشد و آتروفی عضله ایجاد می‌کند. افزایش IGF-1 با تمرین قدرتی و مکمل BCAA باعث ایجاد هیپرتروفی و یک محیط آنابولیک شده و می‌تواند بر عوامل رشد عضلانی مرتبط با سن تأثیر و سودمندی هایی در این خصوص برای سالمندان داشته باشد.

واژگان کلیدی: تمرین مقاومتی، BCAA ، میکرو RNA، HSP60 و سارکوپنی.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of eight weeks of increasing resistance training and BCAA nanoliposome supplementation on MiR-200a, HSP60, soleus muscle mitochondrial gene expression and serum IGF-1 in aged male rats.

نویسندگان [English]

  • ABAZAR Teimoori 1
  • Alireza Ruzbahani 2
  • ZAhra Karimi mehr 3

1 Assistant Professor of Farhangian Alborz University

2 department of physical education and sport sciences, Markazi branch, Islamic azad university

3 department of physical education and sport sciences, Markazi branch, Islamic azad university

چکیده [English]

Aim:. The purpose of this study was to investigate The effect of eight weeks of increasing resistance training and BCAA nanoliposome supplementation on MiR-200a, HSP60, soleus muscle mitochondrial gene expression and serum IGF-1 in aged male rats.

Methods: 32 old male were randomly divided into 4 groups: control, supplement (BCAA), combined (resistant training + BCAA) and exercise. Resistance training consisted of eight weeks of ladder training with moderate intensity (70% of MVCC) and five days a week. Rats in the supplement and combined groups received BCAA nanoliposome supplement at the rate of 600 mg per kilogram of body weight by gavage 5 days a week for 8 weeks. MiR200a and HSP60 were obtained using real-time PCR method and serum IGF-1 was obtained using ELISA method. Statistical analysis was performed with two-way, one-way analysis of variance and Tukey's post hoc test.

Finding: significant decrease in MiR-200a and a increase in the expression of the HSP60 gene and serum IGF-1 of rats in the combination and exercise group compared to the supplement and control groups (p=0.001)., No significant difference was observed between the control and supplement groups (p=0.105).

Conclusion: The direct effect of miR-200a and HSP60 on IGF-1 signal has an important effect on muscle growth and atrophy. The increase of IGF-1 as a result of strength training and BCAA supplementation causes hypertrophy and creates an anabolic environment and can affect age-related muscle growth factors and can bring benefits in this regard for the elderly.

Keywords: Resistance training, BCAA, micro RNA, HSP60.

کلیدواژه‌ها [English]

  • Resistance training
  • BCAA
  • micro RNA
  • HSP60
  • sarcopenia
  1. Ahn B., Ranjit R., Piekarz K., Poopal A., Bian J., Sataranatarajan K., et al. (2018). Skeletal muscle specific overexpression of the mitochondrial H2O2 scavenger, peroxiredoxin 3, rescues mitochondrial dysfunction and sarcopenia phenotypes elicited by redox imbalance. Free Radic. Biol. Med. 128, S123. 10.1016/j.freeradbiomed.10.302.
  2. Allen DL, Bandstra ER, Harrison BC, Thorng S, Stodieck LS, Kostenuik PJ, et al.(2009). Effects of spaceflight on murine skeletal muscle gene expression. Journal of Applied Physiology; 106(2): 582-95.
  3. Alway S. E., Mohamed J. S., Myers M. J. (2017). Mitochondria initiate and regulate sarcopenia. Exerc. Sport Sci. Rev. 45 (2), 58–69. 10.1249.
  4. Angleri, V., Soligon, S. D., da Silva, D. G., Bergamasco, J. G. A., and Libardi, C. A. (2020). Suspension training: a new approach to improve muscle strength, mass, and functional performances in older adults? Front. Physiol. 10. doi: 10.3389/fphys.2019.01576.
  5. Balan E., Schwalm C., Naslain D., Nielens H., Francaux M., Deldicque L. (2019). Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front. Physiol. 10, 1088. 10.3389.
  6. Balan E., Schwalm C., Naslain D., Nielens H., Francaux M., Deldicque L. (2019). Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front. Physiol. 10.21.
  7. Borges I. B. P., de Oliveira D. S., Marie S. K. N., Lenario A. M., Oba-Shinjo S. M., Shinjo S. K. (2021). Exercise training attenuates ubiquitin-proteasome pathway and increases the genes related to autophagy on the skeletal muscle of patients with inflammatory myopathies. J. Clin. Rheumatol. 27, S224–S231. 10.1097.
  8. Borges I. B. P., de Oliveira D. S., Marie S. K. N., Lenario A. M., Oba-Shinjo S. M., Shinjo S. K. (2021). Exercise training attenuates ubiquitin-proteasome pathway and increases the genes related to autophagy on the skeletal muscle of patients with inflammatory myopathies. J. Clin. Rheumatol. 27, S224–S231.
  9. Caldo-Silva, A.; Furtado, G.E.; Chupel, M.U.; Letieri, R.V.; Valente, P.A.; Farhang, M.; Barros, M.P.; Bachi, A.L.L.; Marzetti, E.; Teixeira, A.M.; et al. (2021). Effect of a 40-weeks multicomponent exercise program and branched chain amino acids supplementation on functional fitness and mental health in frail older persons. Exp. Gerontol, 155, 111592.
  10. Casuso R. A., Huertas J. R. (2020). The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing. Ageing Res. Rev. 58, 101025.
  11. Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. (2016). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature genetics; 38(2), 228-33.
  12. Chen P. B., Yang J. S., Park Y. (2018). Adaptations of skeletal muscle mitochondria to obesity, exercise, and polyunsaturated fatty acids. Lipids 53 (3), 271–278.
  13. Di Liu Y. B., Tao X. H., Pan W. L., Wu Y. X., Wang X. H., He Y. Q., et al. (2021). Mitochondrial quality control in sarcopenia: Updated overview of mechanisms and interventions. Aging Dis. 12, 2016–2030. 10.14336.
  14. Englund, D.A.; Zhang, X.; Aversa, Z.; LeBrasseur, N.K. (2021). Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mech. Ageing Dev, 200, 111595.
  15. Estébanez, B.; de Paz, J.A.; Cuevas, M.J.; González-Gallego, J.(2018). Endoplasmic reticulum unfolded protein response, aging and exercise: An update. Front. Physiol, 9, 1744.
  16. Cadore, E.L.; Moreira, O.C.; Almar, M.; de Paz, J.A.; Gonzalez-Gallego, J.; Cuevas, M.J. Effects of a resistance-training programme on endoplasmic reticulum unfolded protein response and mitochondrial functions in PBMCs from elderly subjects. Eur. J. Sport Sci. 2019, 19, 931–940.
  17. Estébanez, B.; Moreira, O.C.; Almar, M.; de Paz, J.A.; Gonzalez-Gallego, J.; Cuevas, M.J. (2019). Effects of a resistance-training programme on endoplasmic reticulum unfolded protein response and mitochondrial functions in PBMCs from elderly subjects. Eur. J. Sport Sci, 19, 931–940.
  18. Farsijani, S.; Payette, H.; Morais, J.A.; Shatenstein, B.; Gaudreau, P.; Chevalier, S. (2017). Even mealtime distribution of protein intake is associated with greater muscle strength, but not with 3-y physical function decline, in free-living older adults: The Quebec longitudinal study on Nutrition as a Determinant of Successful Aging (NuAge study). Am. J. Clin. Nutr., 106, 113–124.
  19. Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. (2019). Resistance Training for Older Adults: Position Statement from the National Strength and Conditioning Association. J. Strength Cond. Res., 33, 2019–2052.
  20. Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S.(2018). The Continuum The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates, Front Med (Lausanne). 2018; 5: 61.
  21. Gasparotto AS, Borges DO, Sassi MG, Milani A, Rech DL, Terres M, et al. (2019). Differential expression of miRNAs related to angiogenesis and adipogenesis in subcutaneous fat of obese and nonobese women. Mol Biol Rep; 46(1):965-73.
  22. Krug AL, Macedo AG, Zago AS, Rush JW, Santos CF, Amaral SL.(2016). High‐intensity resistance training attenuates dexamethasone‐induced muscle atrophy. Muscle & nerve.; 53(5): 779-88.
  23. Lee, D.Y.; Shin, S. (2022). Sarcopenia Is Associated with Metabolic Syndrome in Korean Adults Aged over 50 Years: A Cross-Sectional Study. Int. J. Env. Res. Pub. Health, 19, 1330.
  24. Liao CD, Wu YT, Tsauo JY, Chen PR, Tu YK, Chen HC, et al.(2020).  Effects of protein supplementation combined with exercise training on muscle mass and function in older adults with lower-extremity osteoarthritis: a systematic review and meta-analysis of randomized trials. Nutrients J Am Geriatr Soc 2017; 65: 827– 832. 
  25. Moriwaki, M.; Wakabayashi, H.; Sakata, K.; Domen, K. (2019). The Effect of Branched Chain Amino Acids-Enriched Nutritional Supplements on Activities of Daily Living and Muscle Mass in Inpatients with Gait Impairments: A Randomized Controlled Trial. J. Nutr. Health Aging, 23, 348–353.
  26. Neinast, M.; Murashige, D.(2019). Arany, Z. Branched Chain Amino Acids. Annu. Rev. Physiol. 2019, 81, 139–164.
  27. Oliveira, V.; Borsari, A.L.; Cardenas, J.; Alves, J.C.; Castro, N.F.; Marinello, P.C.; Padilha, C.S.; Webel, A.R.; Erlandson, K.M.; Deminice, R.(2021) Low Agreement Between Initial and Revised European Consensus on Definition and Diagnosis of Sarcopenia Applied to People Living With HIV. Jaids-J. Acquir. Immune Defic. Syndr, 86, e106–e113.
  28. Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, et al. (2017). MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological genomics; 43(11): 665-73.
  29. Ter Borg, S.; Luiking, Y.C.; van Helvoort, A.; Boirie, Y.; Schols, J.; de Groot, C. (2019). Low Levels of Branched Chain Amino Acids, Eicosapentaenoic Acid and Micronutrients Are Associated with Low Muscle Mass, Strength and Function in Community-Dwelling Older Adults. J. Nutr. Health Aging, 23, 27–34.
  30. Thomas, R.; Wang, W.; Su, D.M. (2020). Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun. Ageing, 17, 2.
  31. Wilkinson, D.J.; Piasecki, M.; Atherton, P.J. (2018). The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev., 47, 123–132.
  32. Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019, 58, 1–6.