نوع مقاله : مقاله پژوهشی Released under (CC BY-NC) license I Open Access I
نویسندگان
1 گروه تربیت بدنی واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 گروه علوم ورزشی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
3 گروه زیستشناسی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
چکیده
مقدمه: بیماری پارکینسون یک بیماری پیشروند تحلیل سیستم عصبی است که با از بین رفتن نورونهای دوپامینرژیک همراه است. اثر فعالیت ورزشی بر عوامل مؤثر بر بقاء این نورونها در پارکینسون مشخص نیست. هدف مطالعه حاضر، بررسی اثر یک دوره تمرین شنای تناوبی شدید بر بیان ژن Nurr1 و mir-132 در موشهای صحرایی مبتلا به پارکینسون بود. روش کار: برای این پژوهش تجربی، تعداد 21 سرموش نر صحرایی نژاد ویستار 8 تا 10 هفتهای با میانگین وزن 5/10 ± 200 گرم انتخاب شدند. به منظور القاء پارکینسون، به 14 سرموش، روزانه 1 میلیگرم به ازای هر کیلو وزن بدن تزریق درون صفاقی رزرپین انجام شد. سپس این موشها به طور تصادفی به دو گروه بیمار و تمرین تقسیم شدند. 7 موش سالم نیز به عنوان گروه شاهد در نظر گرفته شد. موشهای گروه تمرین، به مدت شش هفته در 20 نوبت 30 ثانیهای و با 30 ثانیه استراحت بین هر نوبت شنا کردند. بیان ژن هیپوکامپی Nurr1 و mir-132، 48 ساعت پس از آخرین جلسه تمرین اندازهگیری شد. نتایج بین گروهها با آزمون One-way ANOVA همراه با آزمون تعقیبی LSD توسط نرم افزار SPSS-22 و در سطح معنیداری 05/0>P تجزیه و تحلیل شد. یافتهها: نتایج نشان داد بیان ژن Nurr1 در گروه بیمار نسبت به گروه شاهد و گروه تمرین به طور معنیداری پایینتر (به ترتیب 02/0=p و 02/0=p) است؛ در حالی اختلاف معنیداری بین دو گروه تمرین و شاهد مشاهده نشد (9/0=p). بیان ژن mir-132 در گروه بیمار نسبت به گروه شاهد به طور معنیداری بالاتر بود (009/0=p) اما اختلاف معنیداری بین گروه بیمار با گروه تمرین (1/0=p) و بین گروه تمرین و گروه شاهد (1/0=p) مشاهده نشد. نتیجهگیری: در کل به نظر میرسد تمرینات شنای به کار رفته در تحقیق حاضر، در بقاء نورونهای دوپامینی و بهبود بیماری پارکینسون مؤثر باشد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
The effect of high intensity interval swimming on Nurr1 and mir-132 gene expression in rats with Parkinson's disease
نویسندگان [English]
- Sahar Abdolahi 1
- Mehrzad Moghadasi 2
- Mohammdamin Edalatmanesh 3
- Sara Hojati 2
1 Department of exercise physiology, Shiraz branch, Islamic Azad University, Shiraz, Iran
2 Department of exercise physiology, Shiraz branch, Islamic Azad University, Shiraz, Iran
3 Department of biology, Shiraz branch, Islamic Azad University, Shiraz, Iran
چکیده [English]
Introduction: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons. The effect of exercise on these neuron survivals is not well known. The aim of present study was to examine the effect of effect of high intensity interval swimming on Nurr1 and mir-132 gene expression in rats with Parkinson's disease (PD). Methodology: In this experimental study, twenty-one male Wistar rats (age 8 – 10 weeks and weight 200 ± 10.5 grams) were selected. In fourteen rats, PD induced by injection of 1 mg/kg reserpine. Then, these rats were divided into PD group or training group randomly. Seven remaining rats were included in the healthy control group. The rats in the training group, performed high intensity interval swimming, including 20 times of 30 seconds of swimming with 30 seconds of rest between each time for 6 weeks. Hippocampal Nurr1 and mir-132 gene expression were measured 48h after the last session of training. Data were analyzed using one-way ANOVA and LSD post hoc test were run using SPSS-22 at the P <0.05. Results: The study results indicated that Nurr1 gene expression was lower in the PD group compare to the healthy group and training group (p=0.02 and p=0.02 respectively); while, no significant difference was observed between training group and healthy group (p=0.9). mir-132 gene expression was higher in the PD group compare to the healthy group (p=0.009); while, no significant difference was observed between PD group and training group (p=0.1) and between training group and healthy group (p=0.1). Conclusion: In summary, it seems that swimming training utilized in this study improves dopaminergic neurons survival and effective for PD.
کلیدواژهها [English]
- Swimming training
- Parkinson's disease
- Nurr1
- mir-132
- Hippocampus
- Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. (2017). Parkinson disease. Nat Rev Dis Primers. 3:17013.
- Dorsey ER, Bloem BR. (2018). The Parkinson pandemic-A call to action. JAMA Neurol. 75:9–10.
- Takamiya A, Seki M, Kudo S, Yoshizaki T, Nakahara J, Mimura M, et al. (2021). Electroconvulsive therapy for Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 36:50–58.
- Braak H, Del Tredici K. (2008). Invited article: Nervous system pathology in sporadic Parkinson disease. Neurology.70:1916–25.
- Ren Y, Jiang H, Pu J, Li L, Wu J, Yan Y, et al. (2022). Molecular features of parkinson's disease in patient-derived midbrain dopaminergic neurons. Movement Disord. 37:70–9.
- Tian L, Al-Nusaif M, Chen X, Li S, Le W. (2022). Roles of transcription factors in the development and reprogramming of the dopaminergic neurons. Int J Mole Sci. 23(2):845.
- Al-Nusaif M, Yang Y, Li S, Cheng C, Le W. (2022). The role of NURR1 in metabolic abnormalities of Parkinson’s disease. Molecul Neurodegenerat. 17:46-61.
- Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P. (2006). Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Res. 34:5515–27.
- Li Y, Cong B, Ma C, Qi Q, Fu L, Zhang G, et al. (2011). Expression of Nurr1 during rat brain and spinal cord development. Neurosc Letters. 488:49–54.
- Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. (1997). Dopamine neuron agenesis in Nurr1-deficient mice. Science (New York, NY). 276:248–50.
- Yang Z, Li T, Li S, Wei M, Qi H, Shen B. (2019). Altered expression levels of MicroRNA-132 and Nurr1 in peripheral blood of Parkinson's disease: Potential disease biomarkers. ACS Chem Neurosci. 10(5):2243-2249.
- Al-Nusaif M, Lin Y, Li T, Cheng C, Le E. (2022). Advances in NURR1-regulated neuroinflammation associated with Parkinson’s disease. Int J Mol Sci. 23:1618.
- Zhang H, Liu X, Liu Y, Liu J, Gong X, Li G, et al. (2022). Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease. Front Aging Neurosci. 14:975248.
- Qazi TJ, Lu J, Duru L, Zhao J, Qing H. (2021). Upregulation of mir-132 induces dopaminergic neuronal death via activating SIRT1/P53 pathway. Neurosci Lett. 740:135465.
- Ge Y, Wang Z, Gu F, Yang X, Chen Z, Dong W, et al. (2021). Clinical application of magnetic resonance-guided focused ultrasound in Parkinson’s disease: a meta-analysis of randomized clinical trials. Neurol Sci. 42:3595–3604.
- da Silva FC, Iop RDR, de Oliveira LC, Boll AM, de Alvarenga JGS, Gutierres Filho PJB, et al. (2018). Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: a systematic review of randomized controlled trials of the last 10 years. PLoS One 13:e0193113.
- Earhart GM, Falvo MJ. (2013). Parkinson disease and exercise. Compr Physiol. 3:833–848.
- Sadaharu T, Asuka M, Takafumi S, Bumpei S, Susumu M, Jun T. (2020). Exercise promotes neurite extensions from grafted dopaminergic neurons in the direction of the dorsolateral striatum in Parkinson’s disease model rats. J Parkinson Dis. 10(2):511-521.
- da Costa RO, Gadelha-Filho CVJ, da Costa AEM, Feitosa ML, de Araújo DP, de Lucena JD, et al. (2017). The treadmill exercise protects against dopaminergic neuron loss and brain oxidative stress in Parkinsonian rats. Oxid Med Cell Longev. 2017:2138169.
- Amoasii L, Sanchez-Ortiz E, Fujikawa T, Elmquist JK, Bassel-Duby R, Olson EN. (2019). NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci USA. 116(23):11299–11308.
- Dong J, Liu Y, Zhan Z, Wang X. (2018). MicroRNA-132 is associated with the cognition improvement following voluntary exercise in SAMP8 mice. Brain Res Bull. 140:80-87.
- Yazdian MR, Khalaj A, Kalhor N. (2018). The effect of caloric restriction and treadmill exercise on reserpine-induced catalepsy in a rat model of Parkinson’s disease. Shefaye Khatam. 6(4): 45-52.
- Zahraei H, Mogharnasi M, Afzalpour ME, Fanaei H. (2022). The effect of 8 weeks of continuous and high intensity interval swimming on chemerin levels in liver and visceral fat tissues and insulin resistance in male rats with metabolic syndrome. Journal of Sport and Exercise Physiology. 15(1): 33-44.
- Hubrecht R, Kirkwood J. (2010). UFAW Handbook on the care and management of laboratory and other research animals. 8th ed. Wiley-Blackwell Publishing Ltd. P:460-520.
- Abbasi M, Kordi M, Daryanoosh F. (2023). The effect of eight weeks of high-intensity interval swimming training on the expression of PGC-1α and IL-6 proteins and memory function in brain hippocampus in rats with non-alcoholic steatohepatitis induced by high fat diet. J Appl Health Study Sport Physiol. In press.
- Le W, Pan T, Huang M, Xu P, Xie W, Zhu W, et al. (2008). Decreased NURR1 gene expression in patients with Parkinson's disease. J Neurol Sci. 273:29–33.
- Paliga D, Raudzus F, Leppla S, Heumann R, Neumann S. (2019). Lethal Factor Domain-Mediated Delivery of Nurr1 Transcription Factor Enhances Tyrosine Hydroxylase Activity and Protects from Neurotoxin-Induced Degeneration of Dopaminergic Cells. Mole Neurobiol. 56:3393–403.
- Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. (2020). Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol. 11: 356.
- Jia C, Qi H, Cheng C, Wu X, Yang Z, Cai H, et al. (2020). α-Synuclein Negatively Regulates Nurr1 Expression Through NF-κB-Related Mechanism. Front Mole Neurosci. 13:64.
- Yang Y, Latchman D. (2008). Nurr1 transcriptionally regulates the expression of alpha-synuclein. Neuroreport. 19:867–71.
- Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. (2009). A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 137:47–59.
- Li H, Yu L, Li M, Chen X, Tian Q, Jiang Y, Li N. (2020). MicroRNA‐150 serves as a diagnostic biomarker and is involved in the inflammatory pathogenesis of Parkinson's disease. Molecular Genetics & Genomic Medicine. 8(4):e1189.
- Fu H, Cheng Y, Luo H, Rong Z, Li Y, Lu P, et al. (2019). Silencing microRNA-155 attenuates kainic acid-induced seizure by inhibiting microglia activation. Neuroimmunomodulation. 26(2):67-76.
- Babri S, Habibi P, Nouri F, Khazaei M, Nayebi Rad S, Javani G. (2021). Protective effect of swimming and genistein on the expression of microRNA 132, insulin growth factor 1, and brain-derived neurotrophic factor genes, as well as spatial memory, in the hippocampus of diabetic ovariectomized rats. Avicen J Neuro Psycho Physiol. 8(4): 178-185.