نوع مقاله : مقاله پژوهشی Released under (CC BY-NC) license I Open Access I

نویسندگان

1 استادیار، گروه تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی بجنورد، بجنورد، ایران

2 گروه تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی بجنورد، بجنورد، ایران.

چکیده

مقدمه: یکی از اختلالات شایع در دوره سالمندی آتروفی عضلانی وابسته به سن یا همان سارکوپنیا می‌باشد که منجر به کاهش توده عضلانی در سالمندی می‌شود. هدف از این پژوهش، بررسی اثر تمرینات مقاومتی و استقامتی بر بیان ژن‌های MURF1  و MTOR در رت‌های نر سالمند بود.. روش: تعداد ۳۰ سر موش صحرایی نر سالمند، با سن ۱۸ ماه به طور تصادفی به ۳ گروه کنترل (۱۰سر)، تمرین استقامتی (۱۰ سر) و تمرین مقاومتی (۱۰ سر) تقسیم شدند. در گروه استقامتی تمرینات به مدت ۸ هفته و ۵ جلسه در هفته بر روی نوارگردان اجرا شد و گروه مقاومتی تمرینات را به مدت ۸ هفته و ۵ جلسه در هفته بر روی نردبان انجام دادند. ۴۸ ساعت پس از آخرین جلسه تمرین و پس از ناشتایی شبانه، تمامی موش های صحرایی نر سالمند کشته شدند و از عضله دوقلو بافت‌برداری صورت گرفت. سپس میزان بیان ژن های MURF1  و mTOR با استفاده از ژن مرجع به روش Real Time PCR  اندازه‌گیری شد. تجزیه و تحلیل داده‌ها توسط آزمون‌ واریانس یک‌طرفه و آزمون تعقیبی توکی و با استفاده از نرم افزار آمارSPSS  صورت گرفت. آزمون آنالیز واریانس نشان داد که میزان بیان ژن‌های mTOR  و MURF1 در گروه‌های مختلف تفاوت معنی‌داری دارد (05/0≥P). یافته‌ها: نتایج آزمون تعقیبی توکی نشان داد بین گروه کنترل و مقاومتی تفاوت معنی‌داری وجود دارد و تمرین مقاومتی تاثیر بیشتری نسبت به تمرین استقامتی دارد.. نتیجه‌گیری: مطالعه حاضر نشان داد تمرینات مقاومتی نسبت به تمرینات استقامتی تاثیر بیشتری در فعال‌سازی مسیرهای اتوفاژی در عضله اسکلتی دارند. بنابراین، ممکن است تمرین مقاومتی بتواند با بهبود عوامل مرتبط با آتروفی عضلانی، پیشرفت سارکوپنیا در دوره سالمندی را مهار نماید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of resistance and endurance training on the expression of MURF1 and MTOR genes in aged male rats

نویسندگان [English]

  • sadegh cheragh birjandi 1
  • somaye rostamian dolat shanlo 2
  • Ali yaghobi 1

1 Assistant Professor, Department of Physical Education and Sport Sciences, Bojnourd Islamic Azad University, Bojnourd, Iran.

2 Department of Physical Education and Sport Sciences, Bojnourd Islamic Azad University, Bojnourd, Iran

چکیده [English]

Introduction: One of the common disorders in old age is age-related muscle atrophy or sarcopenia, which leads to a decrease in muscle mass in old age. The aim of this study was to investigate the effect of resistance and endurance training on the expression of MURF1 and MTOR genes in aged male rats. Methods: 30 elderly male rats, aged 18 months, were randomly divided into 3 control groups (10), endurance training (10) and resistance training (10). In the endurance group, the exercises were performed on the treadmill for 8 weeks and 5 sessions per week, and the resistance group performed the exercises on the ladder for 8 weeks and 5 sessions per week. 48 hours after the last training session and after overnight fasting, all the aged male rats were killed and tissue was removed from the biceps muscle. Then, the expression level of MURF1 and mTOR genes was measured using the reference gene by Real Time PCR method. Data analysis was done by one-way variance test and Tukey's post hoc test using SPSS software. Analysis of variance test showed that the expression levels of mTOR and MURF1 genes are significantly different in different groups (P≤0.05). Results: The results of Tukey's post hoc test showed that there is a significant difference between the control and resistance groups, and resistance training has a greater effect than endurance training. The present study showed that resistance training has a greater effect on the activation of autophagy pathways in skeletal muscle than endurance training. Conclusions: Therefore, it is possible that resistance training can inhibit the development of sarcopenia in old age by improving factors related to muscle atrophy.

کلیدواژه‌ها [English]

  • resistance training
  • endurance training
  • sarcopenia
  • aging
  • MURF1 and MTOR
  1. Ghorbani Dasht Bayaz N, Donyaie A, Vosadi E. Comparing Endurance and Resistance training on the Expression of Senescence-Related Genes in the Visceral Adipose Tissue of obese rats. Journal of Sport Biosciences. 2023;15(3):37-49.
  2. 2. Azimian E, Akbarnejad Gharehloo A, Pournemati P. The effect of 8 weeks of resistance training on muscle function and some proteins related to sarcopenia in soleus muscle of obese aged male rats. Journal of Applied Health Studies in Sport Physiology. 2023;10(2):13-26.
  3. 3. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiological reviews. 2019;99(1):427-511.
  4. 4. Mahdiadeh M, Pourhaji F, Delshad MH, Dadashi Tonkaboni N, Ppourhaji F. Investigating the effect of physical activity on improving sarcopenia in the elderly: a systematic review. medical journal of mashhad university of medical sciences. 2023;66(1):48-64.
  5. 5. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular and cellular biology. 2009.
  6. 6. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, et al. Mammalian autophagy: how does it work? Annual review of biochemistry. 2016;85(1):685-713.
  7. 7. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, et al. Autophagy is required to maintain muscle mass. Cell metabolism. 2009;10(6):507-15.
  8. 8. Sandri M. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. American Journal of Physiology-Cell Physiology. 2010;298(6):C1291-C7.
  9. 9. Phu S, Boersma D, Duque G. Exercise and sarcopenia. Journal of Clinical Densitometry. 2015;18(4):488-92.
  10. 10. Bialek P, Morris C, Parkington J, St. Andre M, Owens J, Yaworsky P, et al. Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy. Physiological genomics. 2011;43(19):1075-86.
  11. 11. Kang S-H, Lee H-A, Kim M, Lee E, Sohn UD, Kim I. Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing’s syndrome. American Journal of Physiology-Endocrinology and Metabolism. 2017;312(6):E495-E507.
  12. 12. Seidi AN, Aghaei Bahmanbeglou N, Asgharpour H, Ahmadi M. The Effect of Endurance Training on the Intracellular Content of Proteins Related to the Ubiquitin-Proteasome Pathway in the Left Ventricle of Type-2 Diabetic Rats. Journal of Sport Biosciences. 2023;15(1):21-35.
  13. 13. Zeng Z, Liang J, Wu L, Zhang H, Lv J, Chen N. Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control. Frontiers in physiology. 2020;11:583478.
  14. 14. Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, et al. Akt signalling through GSK‐3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. The Journal of physiology. 2006;576(3):923-33.
  15. 15. Khaleghi I, Alijani E, Rahimi A, MOHSENZADEH M. Simultaneous Effect of Resistance Training and Endothelial Ancestral Cell Injection on Expression of MURF1 Muscle Degeneration Factor and Its Relationship with Insulin Resistance In STZ-Induced Diabetic Male Rats. 2021.
  16. 16. Azali Alamdari K, Khalafi M. The effects of high intensity interval training on serum levels of fgf21 and insulin resistance in obese men. Iranian Journal of Diabetes and Metabolism. 2019;18(1):41-8.
  17. 17. Matinhomaee H, Ziaolhagh SJ, Azarbayjani MA, Piri M. Effects of Boldenone consumption and resistance exercise on hepatocyte morphologic damages in male wistar rats. Eur J Exp Biol. 2014;4(2):211-4.
  18. 18. Pukajło K, Kolackov K, Łaczmański Ł, Daroszewski J. Iryzyna–nowy mediator homeostazy energetycznej. Postępy Higieny i Medycyny Doświadczalnej. 2015;69:233-42.
  19. 19. Bodine SC, Latres E, Baumhueter S, Lai VK-M, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704-8.
  20. 20. Chen G-Q, Mou C-Y, Yang Y-Q, Wang S, Zhao Z-W. Exercise training has beneficial anti-atrophy effects by inhibiting oxidative stress-induced MuRF1 upregulation in rats with diabetes. Life sciences. 2011;89(1-2):44-9.
  21. 21. Kang J, Kim S, Lee Y, Oh J, Yoon Y. Effects on goat meat extracts on α-glucosidase inhibitory activity, expression of Bcl-2-Associated X (BAX), p53, and p21 in cell line and expression of atrogin-1, Muscle Atrophy F-Box (MAFbx), Muscle RING-Finger Protein-1 (MuRF-1), and Myosin Heavy Chain-7 (MYH-7) in C2C12 myoblsts. Food Science of Animal Resources. 2023;43(2):359.
  22. 22. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes care. 2002;25(12):2335-41.
  23. 23. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell metabolism. 2007;6(5):376-85.
  24. 24. Nedergaard A, Vissing K, Overgaard K, Kjaer M, Schjerling P. Expression patterns of atrogenic and ubiquitin proteasome component genes with exercise: effect of different loading patterns and repeated exercise bouts. Journal of Applied Physiology. 2007;103(5):1513-22.
  25. 25. Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Frontiers in physiology. 2012;3:142.