نوع مقاله : مقاله مروری Released under (CC BY-NC) license I Open Access I
نویسندگان
1 دانشیار فیزیولوژی ورزشی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
2 استادیار فیزیولوژی ورزشی، دانشکده علوم انسانی، گروه علوم ورزشی، دانشگاه هرمزگان، بندرعباس، ایران
3 دانشیار فیزیولوژی ورزشی، پژوهشگاه تربیت بدنی و علوم ورزشی، تهران، ایران
چکیده
مقدمه: بسیاری از بیماریها سبب کاهش چگالی عروق کوچک در عضلات اسکلتی میشوند و تعیین کمّی اندازه اثر تمرینات ورزشی بر نسبت مویرگ به تار عضلانی میتواند در دقیقسازی نسخههای ورزشی ویژه افراد مستعد، کاربردی باشد. هدف مطالعه حاضر تعیین اندازه اثر تمرینات ورزشی بر نسبت مویرگ به تار عضلانی در افراد در معرض کاهش چگالی عروق کوچک بود. روش کار: جستجو برای مقالات انگلیسی در پایگاههای اطلاعاتی وب آو ساینس، اسکوپوس و پابمد بدون محدود کردن سال انتشار تا فوریه سال 2023 انجام شد. اندازه اثر تفاوت(WMD) با فاصله اطمینان 95 % با استفاده از مدل اثر تصادفی انجام شد. همبستگی بین متغیرها با استفاده از فرارگرسیون مدل اثرات ثابت بررسی شد. یافتهها: اندازه اثر کلی مستخرج از 308 آزمودنی مورد شمول در 22 مداخله تمرین ورزشی، برابر با 21/0 (26/0 تا 17/0 95% CI:) به دست آمد (014/0=p، 16/44=I2). طبق نتایج فرارگرسیون مدل اثرات لحظهای بین مقدار تغییرات نسبت مویرگ به تار عضلانی آزمودنیهای مورد شمول در مداخلات مختلف با سن آنها همبستگی معنیداری مشاهده نشد (92/0=p، 00/0=r و 099/0=z). این اندازه اثر در تحقیقات دارای مدت تمرین کمتر از هشت هفته (3=n) برابر با 18/0، در تحقیقات دارای مدت هشت هفته (7=n) برابر با 22/0 و در تحقیقات دارای بیش از هشت هفته (12=n) برابر 22/0 بود (001/0=p، 68/9=Z). همچنین اندازه اثر تمرینات ورزشی HIIT و هوازی شدید (239/0=MD) از اندازه اثر مستخرج برای تمرینات MICT و هوازی (206/0=MD) بیشتر بود (001/0=p، 73/9=Z). نتیجهگیری: این یافتهها پیشنهاد میکنند اثرات تمرین ورزشی بر چگالی عروق عضلات در بیماران مستعد در هر سنی روی میدهد و برای افزایش اثرات تمرین حتما باید بر تمرینات طولانی مدت و دارای شدت بالاتر تمرکز شود. بااینحال، به دلیل کمبود شواهد همچنان نیاز به بررسی بیشتر باقی است.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Effect of Exercise Training on Capillary to Myofiber Ratio in Patients at Higher Risk of Microvascular Rarefaction: A Meta-Analysis Study
نویسندگان [English]
- Karim Azali Alamdari 1
- Babak Ebadi Shirmard 2
- Hadi Rohani 3
1 Associate Professor of Exercise Physiology, Azarbaijan Shahid Madani University, Tabriz, Iran
2 Department of Sport Sciences, Faculty of Humanities, University of Hormozgan, Bandar abbas, Iran
3 Associate Professor, Sport Sciences Research Institute, Tehran, Iran
چکیده [English]
Introduction: Many diseases cause skeletal muscle microvascular rarefaction (MR) and the quantitative determination of the effect size (ES) of exercise training on skeletal muscle capillary to fiber ratio (C/F) can be useful in refining exercise prescriptions for susceptible population. The aim of the present study was to determine the average ES of exercise training on skeletal muscle C/f in patients disposed to MR. Methodology: A search for English articles was conducted in Web of Science, Scopus, and PubMed databases without limiting the year of publication until February 2023. Weighted mean difference (WMD) with 95% confidence intervals was calculated using random effect model. Correlation between variables was investigated using fixed effects model meta-regression. Results: A summary ES achieved as WMD=0.21 (95% CI: 0.17 to 0.26) from the results of 308 subjects, included in 22 exercise training interventions (p=0.014, I2=44.16). No correlations were observed in between the changes in C/F and the age of subjects included in each intervention based on action of the moment’s meta-regression model (r=-0.00, p=0.92, z=0.099). Among the exercise duration categories, interventions less than 8 weeks (n=3) had the least ES on C/F (WMD=0.18), while a WMD of 0.22 were determined for both of interventions with 8 weeks (n=7) and more than 8 weeks duration (n=12) categories (z=9.68, p=0.001). Moreover, interventions in HIIT and intensive aerobic exercise training category had greater ES (WMD=0.23) compared to MICT and aerobic exercise training (WMD= 020) interventions (z=9.73, p=0.001). Conclusions: Taken together, these findings propose that the beneficial effects of exercise training on skeletal muscle microvascular density can ensue in susceptible patients regardless of their age, and higher intensity as well as longer duration exercise programs should be emphasized. however, more investigations remain to be done because of the lack of evidence in this area.
کلیدواژهها [English]
- Exercise Training
- Capillary Density
- Meta-Analysis
- Amaral SL, Zorn TM, Michelini LCJJoh. (2000). Exercise training normalizes wall-to-lumen ratio of the gracilis muscle arterioles and reduces pressure in spontaneously hypertensive rats.18(11):1563-72.
- Amaral SLd, Sanchez L, Chang A, Rossoni LV, Michelini LCJBJoM, Research B. (2008). Time course of training-induced microcirculatory changes and of vegf expression in skeletal muscles of spontaneously hypertensive female rats.41:424-31.
- Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GAJH. (1999). Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality.34(4):655-8.
- Antonios TFJAjoh. (2006). Microvascular rarefaction in hypertension—reversal or over-correction by treatment? ;19(5):484-5.
- Arciero J, Lembcke L, Burch M, Franko E, Unthank J. (2020). Assessing the hemodynamic contribution of capillaries, arterioles, and collateral arteries to vascular adaptations in arterial insufficiency. Microcirculation (New York, NY : 1994).27(2):e12591.
- Askew CD, Green S, Walker PJ, Kerr GK, Green AA, Williams AD, et al. (2005). Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease. Journal of vascular surgery.41(5):802-7.
- Barnouin Y, McPhee JS, Butler-Browne G, Bosutti A, De Vito G, Jones DA, et al. (2017). Coupling between skeletal muscle fiber size and capillarization is maintained during healthy aging. Journal of cachexia, sarcopenia and muscle.8(4):647-59.
- Barreiro E, Bustamante V, Cejudo P, Gáldiz JB, Gea J, de Lucas P, et al. (2015). Guidelines for the evaluation and treatment of muscle dysfunction in patients with chronic obstructive pulmonary disease.51(8):384-95.
- Beneke R, Pollmann C, Bleif I, Leithäuser R, Hütler MJEjoap. (2002). How anaerobic is the wingate anaerobic test for humans? ;87:388-92.
- Bonner JS, Lantier L, Hasenour CM, James FD, Bracy DP, Wasserman DHJD. (2013). Muscle-specific vascular endothelial growth factor deletion induces muscle capillary rarefaction creating muscle insulin resistance.62(2):572-80.
- Bosch AJ, Harazny JM, Kistner I, Friedrich S, Wojtkiewicz J, Schmieder RE. (2017). Retinal capillary rarefaction in patients with untreated mild-moderate hypertension. BMC Cardiovascular Disorders.17(1):300.
- Carey RM, Muntner P, Bosworth HB, Whelton PKJJotACoC. (2018). Prevention and control of hypertension: Jacc health promotion series.72(11):1278-93.
- Clifford PS, Hellsten YJJoap. (2004). Vasodilatory mechanisms in contracting skeletal muscle.97(1):393-403.
- Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe A, Barker TA, et al. (2016). Sprint interval and moderate‐intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial enos/nad (p) hoxidase protein ratio in obese men.594(8):2307-21.
- Copas J, Shi JQ. (2000). Meta-analysis, funnel plots and sensitivity analysis. Biostatistics.1(3):247-62.
- Davis M, Hill MJPr. (1999). Signaling mechanisms underlying the vascular myogenic response.79(2):387-423.
- Dawson EA, Sheikhsaraf B, Boidin M, Erskine RM, Thijssen DHJSJoM, Sports Si. (2021). Intra‐individual differences in the effect of endurance versus resistance training on vascular function: A cross‐over study.31(8):1683-92.
- De Man F, Handoko M, Groepenhoff H, Van't Hul A, Abbink J, Koppers R, et al. (2009). Effects of exercise training in patients with idiopathic pulmonary arterial hypertension.34(3):669-75.
- De Marchi SF, Gloekler S, Meier P, Traupe T, Steck H, Cook S, et al. (2011). Determinants of preformed collateral vessels in the human heart without coronary artery disease.118(3):198-206.
- De Morton NA. (2009). The pedro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Australian Journal of Physiotherapy.55(2):129-33.
- Duscha BD, Robbins JL, Jones WS, Kraus WE, Lye RJ, Sanders JM, et al. (2011). Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients.31(11):2742-8.
- Edwards JJ, Wiles J, O’Driscoll JJJoH. (2022). Mechanisms for blood pressure reduction following isometric exercise training: A systematic review and meta-analysis.40(11):2299-306.
- Egger M, Smith GD, Schneider M, Minder C. (1997). Bias in meta-analysis detected by a simple, graphical test. Bmj.315(7109):629-34.
- Egginton SJPA-EJoP. (2009). Invited review: Activity-induced angiogenesis.457:963-77.
- Faber JE, Chilian WM, Deindl E, van Royen N, Simons M. (2014). A brief etymology of the collateral circulation. Arteriosclerosis, thrombosis, and vascular biology.34(9):1854-9.
- Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EMJH. (2012). Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: Role of micrornas-16,-21, and-126.59(2):513-20.
- Gabhann FM, Peirce SMJM. (2010). Collateral capillary arterialization following arteriolar ligation in murine skeletal muscle.17(5):333-47.
- Gambardella J, Morelli MB, Wang X-J, Santulli G. (2020). Pathophysiological mechanisms underlying the beneficial effects of physical activity in hypertension. The Journal of Clinical Hypertension.22(2):291-5.
- Gavin TP, Ruster RS, Carrithers JA, Zwetsloot KA, Kraus RM, Evans CA, et al. (2007). No difference in the skeletal muscle angiogenic response to aerobic exercise training between young and aged men.585(1):231-9.
- Gliemann L. (2016). Training for skeletal muscle capillarization: A janus-faced role of exercise intensity? Eur J Appl Physiol.116(8):1443-4.
- Gliemann L, Buess R, Nyberg M, Hoppeler H, Odriozola A, Thaning P, et al. (2015). Capillary growth, ultrastructure remodelling and exercise training in skeletal muscle of essential hypertensive patients.214(2):210-20.
- Gliemann L, Olesen J, Biensø RS, Schmidt JF, Akerstrom T, Nyberg M, et al. (2014). Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men.307(8):H1111-H9.
- Goligorsky MSJO. (2010). Microvascular rarefaction: The decline and fall of blood vessels.6(1):1-10.
- Hansen AH, Nielsen JJ, Saltin B, Hellsten YJJoh. (2010). Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension.28(6):1176-85.
- Higgins JP, Green S. (2008). Cochrane handbook for systematic reviews of interventions.
- Hogan TS. (2009). Exercise-induced reduction in systemic vascular resistance: A covert killer and an unrecognised resuscitation challenge? Medical Hypotheses.73(4):479-84.
- Hoier B, Walker M, Passos M, Walker PJ, Green A, Bangsbo J, et al. (2013). Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease. Journal of applied physiology (Bethesda, Md : 1985).115(12):1777-87.
- Hozo SP, Djulbegovic B, Hozo I. (2005). Estimating the mean and variance from the median, range, and the size of a sample. BMC medical research methodology.5(1):1-10.
- Iepsen UW, Munch GDW, Rugbjerg M, Rinnov AR, Zacho M, Mortensen SP, et al. (2016). Effect of endurance versus resistance training on quadriceps muscle dysfunction in copd: A pilot study.2659-69.
- Ingjer FJEjoap, physiology o. (1979). Capillary supply and mitochondrial content of different skeletal muscle fiber types in untrained and endurance-trained men. A histochemical and ultrastructural study.40:197-209.
- Jesus I, Herrera NA, Andreo JC, Santos CF, Amaral SLJS. (2020). Training counteracts dex-induced microvascular rarefaction by improving the balance between apoptotic and angiogenic proteins.156:108573.
- Jordão MT, Ceroni A, Michelini LCJFip. (2021). Perfusion of brain preautonomic areas in hypertension: Compensatory absence of capillary rarefaction and protective effects of exercise training.12:773415.
- Kerkhove D, Paciolla I, Arpino G. Chapter 3 - classification by mechanisms of cardiotoxicity. In: Lancellotti P, Zamorano Gómez JL, Galderisi M, editors. (Academic Press;2017). Anti-cancer treatments and cardiotoxicity. Boston. p. 13-34.
- Kretschmer M, Rüdiger D, Zahler SJC. (2021). Mechanical aspects of angiogenesis.13(19):4987.
- Lampert E, Mettauer B, Hoppeler H, Charloux A, Charpentier A, Lonsdorfer JJJotACoC. (1998). Skeletal muscle response to short endurance training in heart transplant recipients.32(2):420-6.
- Levy B, Ambrosio G, Pries A, Struijker-Boudier HJC. (2001). Microcirculation in hypertension: A new target for treatment? ;104(6):735-40.
- Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, et al. (2008). Impaired tissue perfusion: A pathology common to hypertension, obesity, and diabetes mellitus. Circulation.118(9):968-76.
- Li S, Li S, Wang L, Quan H, Yu W, Li T, et al. (2022). The effect of blood flow restriction exercise on angiogenesis-related factors in skeletal muscle among healthy adults: A systematic review and meta-analysis.13:814965.
- Liang J, Wei W, Xia W, Tao JJJotACoC. (2019). Effect of exercise on improving microvascular rarefaction in patients with hypertension: Primary results of excavation-chn1.73(9S1):1860-.
- Liang J, Zhang X, Xia W, Tong X, Qiu Y, Qiu Y, et al. (2021). Promotion of aerobic exercise induced angiogenesis is associated with decline in blood pressure in hypertension: Result of excavation-chn1.77(4):1141-53.
- Lip GY, Hall JE. Comprehensive hypertension e-book: Elsevier Health Sciences; 2007.
- Liu Y, Christensen PM, Hellsten Y, Gliemann L. (2022). Effects of exercise training intensity and duration on skeletal muscle capillarization in healthy subjects: A meta-analysis. Med Sci Sports Exerc.54(10):1714-28.
- Lopes S, Afreixo V, Teixeira M, Garcia C, Leitao C, Gouveia M, et al. (2021). Exercise training reduces arterial stiffness in adults with hypertension: A systematic review and meta-analysis.39(2):214-22.
- Mancia G, Grassi GJJohSOJotISoH. (1998). Antihypertensive treatment: Past, present and future.16(1):S1-7.
- Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Systematic reviews.4(1):1-9.
- Moore SM, Zhang H, Maeda N, Doerschuk CM, Faber JE. (2015). Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury. Angiogenesis.18(3):265-81.
- Mortensen SP, Winding KM, Iepsen UW, Munch GW, Marcussen N, Hellsten Y, et al. (2019). The effect of two exercise modalities on skeletal muscle capillary ultrastructure in individuals with type 2 diabetes.29(3):360-8.
- Norling AM, Gerstenecker AT, Buford TW, Khan B, Oparil S, Lazar RMJG. (2020). The role of exercise in the reversal of igf-1 deficiencies in microvascular rarefaction and hypertension.42(1):141-58.
- Olver TD, Laughlin MH. (2016). Endurance, interval sprint, and resistance exercise training: Impact on microvascular dysfunction in type 2 diabetes. American journal of physiology Heart and circulatory physiology.310(3):H337-50.
- Paavonsalo S, Hariharan S, Lackman MH, Karaman S. (2020). Capillary rarefaction in obesity and metabolic diseases—organ-specificity and possible mechanisms.9(12):2683.
- Pérez-Gómez J, Rytter N, Mandrup C, Egelund J, Stallknecht B, Nyberg M, et al. (2021). Menopausal transition does not influence skeletal muscle capillary growth in response to cycle training in women. Journal of applied physiology (Bethesda, Md : 1985).131(1):369-75.
- Prewitt RJBvcihs, function. (1990). Structual and functional rarefaction of microvessels in hypertension.71-90.
- Rabinovich RA, Vilaró J. (2010). Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients. Current opinion in pulmonary medicine.16(2):123-33.
- Rizzoni D, Agabiti-Rosei C, de Ciuceis C. Exercise and microcirculation in hypertension. (Springer;2022). Exercise, sports and hypertension. p. 55-85.
- Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, et al. (2011). Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. Journal of applied physiology (Bethesda, Md : 1985).111(1):81-6.
- Roudier E, Gineste C, Wazna A, Dehghan K, Desplanches D, Birot OJTJop. (2010). Angio‐adaptation in unloaded skeletal muscle: New insights into an early and muscle type‐specific dynamic process.588(22):4579-91.
- Scott SN, Shepherd SO, Hopkins N, Dawson EA, Strauss JA, Wright DJ, et al. (2019). Home‐hit improves muscle capillarisation and enos/nad (p) hoxidase protein ratio in obese individuals with elevated cardiovascular disease risk.597(16):4203-25.
- Shi Y, Thrippleton MJ, Makin SD, Marshall I, Geerlings MI, de Craen AJ, et al. (2016). Cerebral blood flow in small vessel disease: A systematic review and meta-analysis.36(10):1653-67.
- Silva A, Hatch CJ, Chu MT, Cardinal TR. (2022). Collateral arteriogenesis involves a sympathetic denervation that is associated with abnormal α-adrenergic signaling and a transient loss of vascular tone. Frontiers in cardiovascular medicine.9:805810.
- Steegh F, Keijbeck AA, de Hoogt PA, Rademakers T, Houben A, Reesink KD, et al. (2023). Capillary rarefaction: A missing link in renal and cardiovascular disease? Angiogenesis.
- Tamariz-Ellemann A, Wickham KA, Nørregaard LB, Gliemann L, Hellsten Y. (2023). The time is now: Regular exercise maintains vascular health in ageing women. The Journal of Physiology.601(11):2085-98.
- Taylor JC, Yang H, Laughlin MH, Terjung RLJTJop. (2008). Α‐adrenergic and neuropeptide y y1 receptor control of collateral circuit conductance: Influence of exercise training.586(24):5983-98.
- Toriumi H, Tatarishvili J, Tomita M, Tomita Y, Unekawa M, Suzuki NJS. (2009). Dually supplied t-junctions in arteriolo-arteriolar anastomosis in mice: Key to local hemodynamic homeostasis in normal and ischemic states? ;40(10):3378-83.
- van Dinther M, Voorter PHM, Jansen JFA, Jones EAV, van Oostenbrugge RJ, Staals J, et al. (2022). Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging. Journal of Cerebral Blood Flow & Metabolism.42(5):718-37.
- Wan X, Wang W, Liu J, Tong T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology.14:1-13.
- Yannoutsos A, Levy BI, Safar ME, Slama G, Blacher JJJoh. (2014). Pathophysiology of hypertension: Interactions between macro and microvascular alterations through endothelial dysfunction.32(2):216-24.
- Yin H, Arpino J-M, Lee JJ, Pickering JGJFiP. (2021). Regenerated microvascular networks in ischemic skeletal muscle.12:662073.